858 resultados para instructional scaffolding
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This study sought to establish and develop innovative instructional procedures, in which scaffolding can be expanded and applied, in order to enhance learning of English as a Foreign Language (EFL) writing skills in an effective hybrid learning community (a combination of face-to-face and online modes of learning) at the university where the researcher is working. Many educational experts still believe that technology has not been harnessed to its potential to meet the new online characteristics and trends. There is also an urgency to reconsider the pedagogical perspectives involved in the utilisation of online learning systems in general and the social interactions within online courses in particular that have been neglected to date. An action research design, conducted in two cycles within a duration of four months, was utilised throughout this study. It was intended not only to achieve a paradigm shift from transmission-absorption to socio-constructivist teaching/learning methodologies but also to inform practice in these technology-rich environments. Five major findings emerged from the study. First, the scaffolding theory has been extended. Two new scaffolding types (i.e., quasi-transcendental scaffolding and transcendental scafolding), two scaffolding aspects (i.e., receptive and productive) and some scaffolding actions (e.g., providing a stimulus, awareness, reminder, or remedy) for EFL writing skills in an effective hybrid learning community have been identified and elaborated on. Second, the EFL ‘Effective Writing’ students used the scaffolds implemented in a hybrid environment to enhance and enrich their learning of writing of English essays. The online activities, conducted after the F2F sessions most of the time, gave students greater opportunities to both reinforce and expand the knowledge they had acquired in the F2F mode. Third, a variety of teaching techniques, different online tasks and discussion topics utilised in the two modes bolstered the students’ interests and engagement in their knowledge construction of how to compose English-language essays. Fourth, through the scaffolded activities, the students learned how to scaffold themselves and thus became independent learners in their future endeavours of constructing knowledge. Fifth, the scaffolding-to-scaffold activities provided the students with knowledge on how to effectively engage in transcendental scaffolding actions and facilitate the learning of English writing skills by less able peers within the learning community. Thus, the findings of this current study extended earlier understandings of scaffolding in an EFL hybrid learning environment and will contribute to the advancement of future ICT-mediated courses in terms of their scaffolding pedagogical aspects.
Resumo:
Poor informational reading and writing skills in early grades and the need to provide students more experience with informational text have been identified by research as areas of concern. Wilkinson and Son (2011) support future research in dialogic approaches to investigate the impact dialogic teaching has on comprehension. This study (N = 39) examined the gains in reading comprehension, science achievement, and metacognitive functioning of individual second grade students interacting with instructors using dialogue journals alongside their textbook. The 38 week study consisted of two instructional phases, and three assessment points. After a period of oral metacognitive strategies, one class formed the treatment group (n=17), consisting of two teachers following the co-teaching method, and two classes formed the comparison group ( n=22). The dialogue journal intervention for the treatment group embraced the transactional theory of instruction through the use of dialogic interaction between teachers and students. Students took notes on the assigned lesson after an oral discussion. Teachers responded to students' entries with scaffolding using reading strategies (prior knowledge, skim, slow down, mental integration, and diagrams) modeled after Schraw's (1998) strategy evaluation matrix, to enhance students' comprehension. The comparison group utilized text-based, teacher-led whole group discussion. Data were collected using different measures: (a) Florida Assessments for Instruction in Reading (FAIR) Broad Diagnostic Inventory; (b) Scott Foresman end of chapter tests; (c) Metacomprehension Strategy Index (Schmitt, 1990); and (d) researcher-made metacognitive scaffolding rubric. Statistical analyses were performed using paired sample t-tests, regression analysis of covariance, and two way analysis of covariance. Findings from the study revealed that experimental participants performed significantly better on the linear combination of reading comprehension, science achievement, and metacognitive function, than their comparison group counterparts while controlling for pretest scores. Overall, results from the study established that teacher scaffolding using metacognitive strategies can potentially develop students' reading comprehension, science achievement, and metacognitive awareness. This suggests that early childhood students gain from the integration of reading and writing when using authentic materials (science textbooks) in science classrooms. A replication of this study with more students across more schools, and different grade levels would improve the generalizability of these results.
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB. This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB.^ This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. ^ STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. ^ The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.^
Resumo:
This article describes some of the issues that teachers might encounter when scaffolding students’ thinking during mathematical investigations. It describes four episodes where a teacher’s scaffolding failed to support students’ mathematical thinking and explores the reasons why the scaffolding was ineffective. Understanding what is ineffective and why is one way to improve pedagogical practice. As a background to these episodes, we first provide an overview of the mathematical investigation. Our paper concludes with some recommendations for judicious scaffolding during investigations.
Resumo:
In order to develop scientific literacy students need the cognitive tools that enable them to read and evaluate science texts. One cognitive tool that has been widely used in science education to aid the development of conceptual understanding is concept mapping. However, it has been found some students experience difficulty with concept map construction. This study reports on the development and evaluation of an instructional sequence that was used to scaffold the concept-mapping process when middle school students who were experiencing difficulty with science learning used concept mapping to summarise a chapter of a science text. In this study individual differences in working memory functioning are suggested as one reason that students experience difficulty with concept map construction. The study was conducted using a design-based research methodology in the school’s learning support centre. The analysis of student work samples collected during the two-year study identified some of the difficulties and benefits associated with the use of scaffolded concept mapping with these students. The observations made during this study highlight the difficulty that some students experience with the use of concept mapping as a means of developing an understanding of science concepts and the amount of instructional support that is required for such understanding to develop. Specifically, the findings of the study support the use of multi-component, multi-modal instructional techniques to facilitate the development of conceptual understanding with students who experience difficulty with science learning. In addition, the important roles of interactive dialogue and metacognition in the development of conceptual understanding are identified.
Resumo:
Since 2001 the School of Information Technology and Electrical Engineering (ITEE) at the University of Queensland has been involved in RoboCupJunior activities aimed at providing children with the Robot building and programming knowledge they need to succeed in RoboCupJunior competitions. These activities include robotics workshops, the organization of the State-wide RoboCupJunior competition, and consultation on all matters robotic with schools and government organizations. The activities initiated by ITEE have succeeded in providing children with the scaffolding necessary to become competent, independent robot builders and programmers. Results from state, national and international competitions suggest that many of the children who participate in the activities supported by ITEE are subsequently able to purpose- build robots to effectively compete in RoboCupJunior competitions. As a result of the scaffolding received within workshops children are able to think deeply and creatively about their designs, and to critique their designs in order to make the best possible creation in an effort to win.
Resumo:
Drawn from a larger mixed methods study, this case study provides an account of aspects of the music education programme that occurred with one teacher and a kindergarten class of children aged three and four years. Contrary to transmission approaches that are often used in Hong Kong, the case depicts how musical creativity was encouraged by the teacher in response to children’s participation during the time for musical free play. It shows how the teacher scaffolded the attempts of George, a child aged 3.6 years to use musical notation. The findings are instructive for kindergarten teachers in Hong Kong and suggest ways in which teachers might begin to incorporate more creative approaches to musical education. They are also applicable to other kindergarten settings where transmission approaches tend to dominate and teachers want to encourage children’s musical creativity.
Resumo:
The study investigated the effect on learning of four different instructional formats used to teach assembly procedures. Cognitive load and spatial information processing theories were used to generate the instructional material. The first group received a physical model to study, the second an isometric drawing, the third an isometric drawing plus a model and the fourth an orthographic drawing. Forty secondary school students were presented with the four different instructional formats and subsequently tested on an assembly task. The findings indicated that there may be evidence to argue that the model format which only required encoding of an already constructed three dimensional representation, caused less extraneous cognitive load compared to the isometric and the orthographic formats. No significant difference was found between the model and the isometric-plus-model formats on all measures because 80% of the students in the isometric-plus-model format chose to use the model format only. The model format also did not differ significantly from other groups in total time taken to complete the assembly, in number of correctly assembled pieces and in time spent on studying the tasks. However, the model group had significantly more correctly completed models and required fewer extra looks than the other groups.