996 resultados para glancing angle deposition
Resumo:
Graded-index ZrO2 films has been fabricated on K9 glass by glancing angle deposition. Because the index mismatch at the interface has been reduced, the film results in wideband high-transmission antireflection. From 400nm to 1200nm, the film reflection is lower than 0.8% and the lowest value is 0.2% at 432nm.
Resumo:
Some results of an investigation on the layer thickness uniformity of glancing angle deposition are presented. A zirconia monolayer has been deposited by glancing angle deposition to analyze the layer thickness uniformity. The experimental results indicate that the thickness variation over the substrate is less than 0. 1%, which is considered as good uniformity. It is found that the non-uniformity of experimental results is larger than that of the theoretical results. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The glancing angle deposition (GLAD) technique was used to deposit ZnS films by electron beam evaporation method. The cross sectional scanning electron microscopy (SEM) image illustrated a highly orientated microstructure composed of slanted column. The atomic force microscopy (APM) analysis indicated that incident flux angle had significant effects on the nodule size and surface roughness. Under identical nominal thickness, the actual thickness of the GLAD films is related to the incident flux angle. The refractive index and in-plane birefringence of the GLAD ZnS films were discussed, and the maximum bireffingence Delta n = 0.036 was obtained at incident flux angle of alpha = 80 degrees. Therefore, the glancing angle deposition technique is a promising way to create a columnar structure with enhanced birefringent property. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Glancing angle deposition is a novel method to prepare graded index coatings. By using this method and physical vapour deposition, ZrO2 is used to engineer graded index filter on BK7 glass substrate. Controlling the deposition rate and the periodic oscillation of oblique angle of deposited material, a 10-period graded index ZrO2 filter with high reflection near 532 nm and high transmittance at wavelength 1064 nm is fabricated. The causes of difference between the theoretical and experimental results are discussed in detail. The material properties and electron gun nonlinearity are possibly the main origins of the difference, which result in the variations in both thickness control and deposition rate of the Elm material.
Resumo:
TiO2 films deposited by electron beam evaporation with glancing angle deposition (GLAD) technique were reported. The influence of flux angle on the surface morphology and the microstructure was investigated by scanning electron microscopy. The GLAD TiO2 films are anisotropy with highly orientated nanostructure of the slanted columns. With the increase of flux angle, refractive index and packing density decrease. This is caused by the shadowing effect dominating film growth. The anisotropic structure of TiO2 films results in optical birefringence, which reaches its maximum at the flux angle alpha = 65 degrees. The maximum birefringence of GLAD TiO2 films is higher than that of common bulk materials. It is suggested that glancing angle deposition may offer an effective method to obtain tailorable refractive index and birefringence in a large continuous range. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ZrO2 films were prepared by electron beam evaporation with glancing angle deposition (GLAD) technique. The as-deposition and annealed ZrO2 films are all amorphous, different from that deposited at normal incidence. Due to the shadowing effect, a highly orientated structure composed of slanted columns formed, and the obtained films became the mixture of slanted columns and voids. The relationship among the effective refractive index, packing density and flux incident angle was investigated. The refractive index and packing density of ZrO2 films decrease with the increase of the incident angle. The in-plane birefringence of GLAD ZrO2 films was calculated. At the packing density of 0.576, the maximum birefringence is 0.037. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Nb2O5 sculptured thin. films deposited by electron beam evaporation with glancing angle deposition were prepared. Nb2O5 sculptured thin. films with tilted columns are optical anisotropy. XRD, SEM, UV-vis-NIR spectra are employed to characterize the microstructure and optical properties. The maximum of birefringence (Delta n) is up to 0.045 at alpha = 70 degrees with packing density of 0.487. With increasing the deposition angle, refractive index and packing density of Nb2O5 STF are decreasing. The relationship among deposition parameter, microstructure and optical properties was investigated in detail. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
The growth of Fe–Ni based amorphous nanocolumns has been studied using atomic force microscopy. The root mean square roughness of the film surface increased with the deposition time but showed a little change at higher deposition time. It was found that the separation between the nanostructures increased sharply during the initial stages of growth and the change was less pronounced at higher deposition time. During the initial stages of the column growth, a roughening process due to self shadowing is dominant and, as the deposition time increases, a smoothening mechanism takes place due to the surface diffusion of adatoms
Resumo:
The effect of flux angle, substrate temperature and deposition rate on obliquely deposited germanium (Ge) films has been investigated. By carrying out deposition with the vapor flux inclined at 87° to the substrate normal at substrate temperatures of 250°C or 300°C, it may be possible to obtain isolated Ge nanowires. The Ge nanowires are crystalline as shown by Raman Spectroscopy.
Resumo:
从理论上分析了单一膜料倾斜入射沉积时的折射率与填充密度的关系,给出了三种不同的表达式;然后从正变和负变、完整周期和存在半周期以及不同的周期数等几个方面探讨了膜层的填充密度按照线性变化时的渐变折射率薄膜的光学特性,并将折射率的不同理论表达式对光学特性的影响进行了对比,最后讨论了单一膜料倾斜入射沉积渐变折射率薄膜的方法、填充密度线性变化时的渐变折射率薄膜的应用及制备中需要进一步解决和处理的问题.
Resumo:
使用倾斜角沉积(GLAD)的电子束蒸发技术,制备了倾斜角度在60°~85°之间的ZnS双折射雕塑薄膜(STF)。使用X射线衍射(XRD)和扫描电镜(SEM)检测了ZnS薄膜的结晶状态和断面形貌,使用Lamda-900分光光度计测量了薄膜在不同的偏振光入射时的透过率。研究发现,室温下倾斜沉积ZnS薄膜断面为倾斜柱状结构,且薄膜的结晶程度不高。在相同的监控厚度时,随倾斜角度增大,沉积到基片上的薄膜厚度逐渐变小,但仍然大于余弦曲线显示的理论厚度。根据偏振光垂直入射时薄膜的透过光谱计算了不同角度沉积的薄膜的折射率