586 resultados para Sussmann orbits


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3–body problem. Additionally, we also continue to this restricted problem the so called “comets orbits”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear 3–body problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an autonomous differential system in Rn with a periodic orbit and we give a new method for computing the characteristic multipliers associated to it. Our method works when the periodic orbit is given by the transversal intersection of n ¡ 1 codimension one hypersurfaces and is an alternative to the use of the first order variational equations. We apply it to study the stability of the periodic orbits in several examples, including a periodic solution found by Steklov studying the rigid body dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.