983 resultados para Number representation format
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
Paper submitted to Euromicro Symposium on Digital Systems Design (DSD), Belek-Antalya, Turkey, 2003.
Resumo:
Two experiments were conducted to test the hypothesis that toddlers have access to an analog-magnitude number representation that supports numerical reasoning about relatively large numbers. Three-year-olds were presented with subtraction problems in which initial set size and proportions subtracted were systematically varied. Two sets of cookies were presented and then covered The experimenter visibly subtracted cookies from the hidden sets, and the children were asked to choose which of the resulting sets had more. In Experiment 1, performance was above chance when high proportions of objects (3 versus 6) were subtracted from large sets (of 9) and for the subset of older participants (older than 3 years, 5 months; n = 15), performance was also above chance when high proportions (10 versus 20) were subtracted from the very large sets (of 30). In Experiment 2, which was conducted exclusively with older 3-year-olds and incorporated an important methodological control, the pattern of results for the subtraction tasks was replicated In both experiments, success on the tasks was not related to counting ability. The results of these experiments support the hypothesis that young children have access to an analog-magnitude system for representing large approximate quantities, as performance on these subtraction tasks showed a Webers Law signature, and was independent of conventional number knowledge.
Resumo:
Recent research in cognitive sciences shows a growing interest in spatial-numerical associations. The horizontal SNARC (spatial-numerical association of response codes) effect is defined by faster left-sided responses to small numbers and faster right-sided responses to large numbers in a parity judgment task. In this study we investigated whether there is also a SNARC effect for upper and lower responses. The grounded cognition approach suggests that the universal experience of "more is up" serves as a robust frame of reference for vertical number representation. In line with this view, lower hand responses to small numbers were faster than to large numbers (Experiment 1). Interestingly, the vertical SNARC effect reversed when the lower responses were given by foot instead of the hand (Experiments 2, 3, and 4). We found faster upper (hand) responses to small numbers and faster lower (foot) responses to large numbers. Additional experiments showed that spatial factors cannot account for the reversal of the vertical SNARC effect (Experiments 4 and 5). Our results question the view of "more is up" as a robust frame of reference for spatial-numerical associations. We discuss our results within a hierarchical framework of numerical cognition and point to a possible link between effectors and number representation.
Resumo:
Existing parsers for textual model representation formats such as XMI and HUTN are unforgiving and fail upon even the smallest inconsistency between the structure and naming of metamodel elements and the contents of serialised models. In this paper, we demonstrate how a fuzzy parsing approach can transparently and automatically resolve a number of these inconsistencies, and how it can eventually turn XML into a human-readable and editable textual model representation format for particular classes of models.
Resumo:
The well--known Minkowski's? $(x)$ function is presented as the asymptotic distribution function of an enumeration of the rationals in (0,1] based on their continued fraction representation. Besides, the singularity of ?$(x)$ is clearly proved in two ways: by exhibiting a set of measure one in which ?ï$(x)$ = 0; and again by actually finding a set of measure one which is mapped onto a set of measure zero and viceversa. These sets are described by means of metrical properties of different systems for real number representation.
Resumo:
Programs manipulate information. However, information is abstract in nature and needs to be represented, usually by data structures, making it possible to be manipulated. This work presents the AGraphs, a representation and exchange format of the data that uses typed directed graphs with a simulation of hyperedges and hierarchical graphs. Associated to the AGraphs format there is a manipulation library with a simple programming interface, tailored to the language being represented. The AGraphs format in ad-hoc manner was used as representation format in tools developed at UFRN, and, to make it more usable in other tools, an accurate description and the development of support tools was necessary. These accurate description and tools have been developed and are described in this work. This work compares the AGraphs format with other representation and exchange formats (e.g ATerms, GDL, GraphML, GraX, GXL and XML). The main objective this comparison is to capture important characteristics and where the AGraphs concepts can still evolve
Resumo:
O presente estudo investigou aspectos da representação numérica (processamento numérico e cálculo) e memória operacional de crianças com transtornos de aprendizagem. Participaram 30 crianças de idade entre 9 e 10 anos, ambos os gêneros, divididas em dois grupos: sem dificuldade em aritmética (SDA; N=11) e com dificuldade em aritmética (CDA; N=19), avaliadas pela ZAREKI-R, Matrizes Coloridas de Raven, o Blocos de Corsi e o BCPR. Crianças CDA exibiram escores levemente mais baixos que as SDA quanto ao nível intelectual e nos Blocos de Corsi. Na ZAREKI-R apresentaram prejuízo nos subtestes ditado de números, cálculo mental, problemas aritméticos e total. Crianças CDA apresentaram déficits específicos em memória operacional visuoespacial e comprometimento em processamento numérico e cálculo, compatível com discalculia do desenvolvimento.
Resumo:
The humans process the numbers in a similar way to animals. There are countless studies in which similar performance between animals and humans (adults and/or children) are reported. Three models have been developed to explain the cognitive mechanisms underlying the number processing. The triple-code model (Dehaene, 1992) posits an mental number line as preferred way to represent magnitude. The mental number line has three particular effects: the distance, the magnitude and the SNARC effects. The SNARC effect shows a spatial association between number and space representations. In other words, the small numbers are related to left space while large numbers are related to right space. Recently a vertical SNARC effect has been found (Ito & Hatta, 2004; Schwarz & Keus, 2004), reflecting a space-related bottom-to-up representation of numbers. The magnitude representations horizontally and vertically could influence the subject performance in explicit and implicit digit tasks. The goal of this research project aimed to investigate the spatial components of number representation using different experimental designs and tasks. The experiment 1 focused on horizontal and vertical number representations in a within- and between-subjects designs in a parity and magnitude comparative tasks, presenting positive or negative Arabic digits (1-9 without 5). The experiment 1A replied the SNARC and distance effects in both spatial arrangements. The experiment 1B showed an horizontal reversed SNARC effect in both tasks while a vertical reversed SNARC effect was found only in comparative task. In the experiment 1C two groups of subjects performed both tasks in two different instruction-responding hand assignments with positive numbers. The results did not show any significant differences between two assignments, even if the vertical number line seemed to be more flexible respect to horizontal one. On the whole the experiment 1 seemed to demonstrate a contextual (i.e. task set) influences of the nature of the SNARC effect. The experiment 2 focused on the effect of horizontal and vertical number representations on spatial biases in a paper-and-pencil bisecting tasks. In the experiment 2A the participants were requested to bisect physical and number (2 or 9) lines horizontally and vertically. The findings demonstrated that digit 9 strings tended to generate a more rightward bias comparing with digit 2 strings horizontally. However in vertical condition the digit 2 strings generated a more upperward bias respect to digit 9 strings, suggesting a top-to-bottom number line. In the experiment 2B the participants were asked to bisect lines flanked by numbers (i.e. 1 or 7) in four spatial arrangements: horizontal, vertical, right-diagonal and left-diagonal lines. Four number conditions were created according to congruent or incongruent number line representation: 1-1, 1-7, 7-1 and 7-7. The main results showed a more reliable rightward bias in horizontal congruent condition (1-7) respect to incongruent condition (7-1). Vertically the incongruent condition (1-7) determined a significant bias towards bottom side of line respect to congruent condition (7-1). The experiment 2 suggested a more rigid horizontal number line while in vertical condition the number representation could be more flexible. In the experiment 3 we adopted the materials of experiment 2B in order to find a number line effect on temporal (motor) performance. The participants were presented horizontal, vertical, rightdiagonal and left-diagonal lines flanked by the same digits (i.e. 1-1 or 7-7) or by different digits (i.e. 1-7 or 7-1). The digits were spatially congruent or incongruent with their respective hypothesized mental representations. Participants were instructed to touch the lines either close to the large digit, or close to the small digit, or to bisected the lines. Number processing influenced movement execution more than movement planning. Number congruency influenced spatial biases mostly along the horizontal but also along the vertical dimension. These results support a two-dimensional magnitude representation. Finally, the experiment 4 addressed the visuo-spatial manipulation of number representations for accessing and retrieval arithmetic facts. The participants were requested to perform a number-matching and an addition verification tasks. The findings showed an interference effect between sum-nodes and neutral-nodes only with an horizontal presentation of digit-cues, in number-matching tasks. In the addition verification task, the performance was similar for horizontal and vertical presentations of arithmetic problems. In conclusion the data seemed to show an automatic activation of horizontal number line also used to retrieval arithmetic facts. The horizontal number line seemed to be more rigid and the preferred way to order number from left-to-right. A possible explanation could be the left-to-right direction for reading and writing. The vertical number line seemed to be more flexible and more dependent from the tasks, reflecting perhaps several example in the environment representing numbers either from bottom-to-top or from top-to-bottom. However the bottom-to-top number line seemed to be activated by explicit task demands.
Resumo:
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Resumo:
Esta investigación estudia la influencia de la comprensión de la aproximación a un número y de los modos de representación en la construcción de la concepción dinámica del límite en estudiantes de Bachillerato. El análisis de realizó usando el análisis implicativo (Gras, Suzuki, Guillet y Spagnolo, 2008). Los resultados indican que la construcción paulatina de la concepción dinámica del límite se realiza mediante procesos diferenciados de aproximación en el dominio y en el rango, y, dentro de estos últimos, aquellos en los que las aproximaciones laterales coinciden de las que no coinciden. Además, nuestros resultados indican que el modo numérico o el modo algebraico-numérico desempeñan un papel relevante en el desarrollo de la comprensión de la concepción dinámica de límite.
Resumo:
This study examined the utility of the Attachment Style Questionnaire (ASQ) in an Italian sample of 487 consecutively admitted psychiatric participants and an independent sample of 605 nonclinical participants. Minimum average partial analysis of data from the psychiatric sample supported the hypothesized five-factor structure of the items; furthermore, multiple-group component analysis showed that this five-factor structure was not an artifact of differences in item distributions. The five-factor structure of the ASQ was largely replicated in the nonclinical sample. Furthermore, in both psychiatric and nonclinical samples, a two-factor higher order structure of the ASQ scales was observed. The higher order factors of Avoidance and Anxious Attachment showed meaningful relations with scales assessing parental bonding, but were not redundant with these scales. Multivariate normal mixture analysis supported the hypothesis that adult attachment patterns, as measured by the ASQ, are best considered as dimensional constructs.
Resumo:
We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.
Resumo:
This paper presents a novel error-free (infinite-precision) architecture for the fast implementation of 8x8 2-D Discrete Cosine Transform. The architecture uses a new algebraic integer encoding of a 1-D radix-8 DCT that allows the separable computation of a 2-D 8x8 DCT without any intermediate number representation conversions. This is a considerable improvement on previously introduced algebraic integer encoding techniques to compute both DCT and IDCT which eliminates the requirements to approximate the transformation matrix ele- ments by obtaining their exact representations and hence mapping the transcendental functions without any errors. Apart from the multiplication-free nature, this new mapping scheme fits to this algorithm, eliminating any computational or quantization errors and resulting short-word-length and high-speed-design.
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^