On-chip Non-reciprocal Optical Devices Based on Quantum Inspired Photonic Lattices
Data(s) |
01/01/2013
|
---|---|
Resumo |
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting. |
Formato |
application/pdf |
Identificador |
http://digitalcommons.mtu.edu/physics-fp/7 http://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1006&context=physics-fp |
Publicador |
Digital Commons @ Michigan Tech |
Fonte |
Department of Physics Publications |
Palavras-Chave | #Atomic, Molecular and Optical Physics #Optics #Physics |
Tipo |
text |