A new light on Minkowski's? $(x)$ function


Autoria(s): Viader, Pelegrí; Paradís, Jaume; Bibiloni, Lluís
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

The well--known Minkowski's? $(x)$ function is presented as the asymptotic distribution function of an enumeration of the rationals in (0,1] based on their continued fraction representation. Besides, the singularity of ?$(x)$ is clearly proved in two ways: by exhibiting a set of measure one in which ?ï$(x)$ = 0; and again by actually finding a set of measure one which is mapped onto a set of measure zero and viceversa. These sets are described by means of metrical properties of different systems for real number representation.

Identificador

http://hdl.handle.net/10230/843

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods #asymptotic distribution functions #minkowski's function #singular functions
Tipo

info:eu-repo/semantics/workingPaper