963 resultados para Base Engine Components.
Resumo:
Wear studies of engine components of high-speed diesel engines running under various operating conditions are presented. Tests were conducted under controlled conditions over long periods. The results of the various tests are discussed and attempts have been made to examine the effects of engine operating variables and the quality of the lubricating oil on the wear of engine components.
Resumo:
Information Paper, No 26
Resumo:
National Highway Traffic Safety Administration, Office of State Vehicle Programs, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
This report is a PhD dissertation proposal to study the in-cylinder temperature and heat flux distributions within a gasoline turbocharged direct injection (GTDI) engine. Recent regulations requiring automotive manufacturers to increase the fuel efficiency of their vehicles has led to great technological achievements in internal combustion engines. These achievements have increased the power density of gasoline engines dramatically in the last two decades. Engine technologies such as variable valve timing (VVT), direct injection (DI), and turbocharging have significantly improved engine power-to-weight and power-to-displacement ratios. A popular trend for increasing vehicle fuel economy in recent years has been to downsize the engine and add VVT, DI, and turbocharging technologies so that a lighter more efficient engine can replace a larger, heavier one. With the added power density, thermal management of the engine becomes a more important issue. Engine components are being pushed to their temperature limits. Therefore it has become increasingly important to have a greater understanding of the parameters that affect in-cylinder temperatures and heat transfer. The proposed research will analyze the effects of engine speed, load, relative air-fuel ratio (AFR), and exhaust gas recirculation (EGR) on both in-cylinder and global temperature and heat transfer distributions. Additionally, the effect of knocking combustion and fuel spray impingement will be investigated. The proposed research will be conducted on a 3.5 L six cylinder GTDI engine. The research engine will be instrumented with a large number of sensors to measure in-cylinder temperatures and pressures, as well as, the temperature, pressure, and flow rates of energy streams into and out of the engine. One of the goals of this research is to create a model that will predict the energy distribution to the crankshaft, exhaust, and cooling system based on normalized values for engine speed, load, AFR, and EGR. The results could be used to aid in the engine design phase for turbocharger and cooling system sizing. Additionally, the data collected can be used for validation of engine simulation models, since in-cylinder temperature and heat flux data is not readily available in the literature..
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
Commercial computer games contain “physics engine” components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a detailed scientific investigation of the physics engine of Unreal Tournament 2004 (UT2004). This article presents their motivation, methodology, and results. The author presents the findings of experiments that probed the accessibility and fidelity of UT2004's physics engine, examples of educational materials developed, and an evaluation of their use in high school classes. The associated pedagogical implications of this approach are discussed, and the author suggests guidelines for educators on how to deploy the approach. Key resources are presented on an associated Web site.
Resumo:
Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.
Resumo:
Small-scale mechanical testing of materials has gained prominence in the last decade or so due to the continuous miniaturization of components and devices in everyday application. This review describes the various micro-fabrication processes associated with the preparation of miniaturized specimens, geometries of test specimens and the small scale testing techniques used to determine the mechanical behaviour of materials at the length scales of a few hundred micro-meters and below. This is followed by illustrative examples in a selected class of materials. The choice of the case studies is based on the relevance of the materials used in today's world: evaluation of mechanical properties of thermal barrier coatings (TBCs), applied for enhanced high temperature protection of advanced gas turbine engine components, is essential since its failure by fracture leads to the collapse of the engine system. Si-based substrates, though brittle, are indispensible for MEMS/NEMS applications. Biological specimens, whose response to mechanical loads is important to ascertain their role in diseases and to mimic their structure for attaining high fracture toughness and impact resistance. An insight into the mechanisms behind the observed size effects in metallic systems can be exploited to achieve excellent strength at the nano-scale. A future outlook of where all this is heading is also presented.
Resumo:
Market competitiveness for aero engine power plant dictates that improvements in engine performance and reliability are guaranteed a priori by manufacturers. The requirement to accurately predict the life of engine components makes exacting demands of the internal air system, which must provide effective cooling over the engine duty cycle with the minimum consumption of compressor section air. Tests have been conducted at the University of Sussex using a turbine test facility which comprises a two stage turbine with an individual stage pressure ratio of 1.7:1. Main annulus air is supplied by an adapted Rolls-Royce Dart compressor at up to 440 K and 4.8 kg s-1. Cooling flow rates ranging from 0.71 to 1.46 Cw, ent, a disc entrainment parameter, have been used to allow ingress or egress dominated stator well flow conditions. The mechanical design of the test section allows internal cooling geometry to be rapidly re-configured, allowing the effect of jet momentum and coolant trajectory to be investigated. An important facet to this investigation is the use of CFD to model and analyse the flow structures associated with the cavity conditions tested, as well as to inform the design of cooling path geometry. This paper reports on the effectiveness of stator well coolant flow rate and delivery configurations using experimental data and also CFD analysis to better quantify the effect of stator well flow distribution on component temperatures. Copyright © 2011 by Rolls-Royce plc.
Resumo:
One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.
Resumo:
One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.