999 resultados para 1205 Teoría de números
Resumo:
Resumen basado en el de las autoras
Resumo:
Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería. La fecha de publicación es la fecha de lectura
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.
Resumo:
Este trabajo contiene los principales resultados sobre Números Normales de Borel, como son los teoremas sobre su medida en el intervalo unitario y algunas caracterizaciones y definiciones alternativas. Se exponen también los ejemplos más conocidos, curiosidades y resultados necesarios en relación con las Leyes de los Grandes Números y la representación en expansión b-ádica.
Resumo:
La tradicional prueba del médico aunque pasa de moda para verificar la corrección de resultados de cálculos numéricos, ofrece una situación problemática interesante sobre teoría de números. En este artículo se recordara en qué consiste la prueba del nueve y se abordaron los siguientes cuestiones: ¿qué prueba la prueba del nueve? ¿Por qué el nueve no otro número como siete vuelo 11? ¿sirve nueve para sistema de numeración distintos de 10? por último ¿qué hacer con la prueba del nueve: abandonarla como prueba buscar otra unidad didáctica?.
Resumo:
Este libro tiene como propósito resolver problemas que tienen que ver con diferentes áreas del conocimiento como: economía, finanzas, teoría de números, geometría y en general, muchos de los problemas que plantean y abordan las ciencias básicas. La colección de textos lecciones de matemáticas, iniciativa del departamento de Ciencias Básicas de la universidad de Medellín (Medellín, Colombia) y su grupo de investigación SUMMA, incluye en cada número la exposición detallada de un tema temático en particular, tratado con el rigor que muchas veces no es posible lograr en un curso regular de la disciplina. Las matemáticas incluyen diferentes áreas del saber matemático como: álgebra, trigonometría, cálculo, estadística y probabilidades, álgebra lineal, métodos lineales y numéricos, historia de las matemáticas, geometría, matemáticas puras y aplicadas, ecuaciones diferenciales y utilización de programas informáticos
Resumo:
Nuestro principal objetivo en este trabajo será seguir el artículo en el que consideran una órbita del “mapeo doblamiento”, shift: σ t → 2t en R=Z (este es el mapeo cuadrático cuando pensamos a R=Z como el círculo unitario en el plano complejo). Llamaremos a un subconjunto cerrado A de R=Z ordenado bajo σ si A es invariante (esto es σ (A) = A) y si σ preserva el orden cíclico de los puntos de A. Tales conjuntos tienen asignado un número de rotación, que lo llamamos así porque se parece mucho al que definimos en homeomorfismos del círculo, otra manera de ver el número de rotación es tomar la expansión decimal de cualquier t en A y luego calcular la frecuencia con la cual el dígito ’1’ se produce en esta expansión binaria. En este trabajo nos preocuparemos por dar una clasificación completa de los subconjuntos A que cumplen con ser ordenados, explícitamente daremos un algoritmo para su construcción, algunas propiedades de teoría de números, una generalización de la noción de orden y una caracterización del orden de todos los puntos alrededor de R=Z
Resumo:
Dentro de la teoría de números, la ley de reciprocidad cuadrática está definida como una de las más útiles, desde que fue enunciada en 1772 por Euler. En este trabajo se presenta la Ley de Reciprocidad Cuadrática y da a conocer mediante ejemplos el funcionamiento y la importancia de ésta en la Teoría Elemental de Números. Desarrolla los teoremas básico en la teoría de números (axiomas de suma, de multiplicación y resultados de divisibilidad) aborda la teoría de congruencias lineales y cuadráticas con módulo primo y el criterio de Euler para residuos cuadráticos, observando asimismo, el símbolo de Legendre y sus propiedades. Se concluye con la afirmación de que la Ley de Reciprocidad Cuadrática proporciona un método práctico para determinar el carácter cuadrático de un número, ayudando a determinar la solubilidad de las congruencias cuadráticas, del mismo modo, contribuye también a calcular símbolos Legendre de una forma más sencilla demostrando si un número tiene raíz primitiva de un primo.
Resumo:
El estudio de los sistemas dinámicos es un campo importante de la investigación matemática actual. Estos pueden ser clasificados como sistemas dinámicos clásicos y sistemas dinámicos 100% discretos. A su vez los sistemas dinámicos clásicos se pueden dividir en sistemas dinámicos discretos y sistemas dinámicos continuos. El estudio de los sistemas dinámicos clásicos involucra herramientas de cálculo y geometría diferencial. En cambio los sistemas dinámicos 100% discretos se requiere utilizar herramientas de teoría de números, álgebra, combinatoria y teoría de grafos. Históricamente, los sistemas dinámicos llamados finitos sistemas dinámicos discretos no han recibido en modo alguna atención como la han tenido los sistemas continuos. Hay por supuesto muchas razones para esto, una de las cuales es el uso exitoso de las Ecuaciones Diferenciales Ordinarias (EDO’s) y Ecuaciones Diferenciales Parciales (EDP’s) como herramientas analíticas y descriptivas en las ciencias y sus aplicaciones.
Resumo:
Experiencia interdisciplinar entre la física y las matemáticas, basada en algunos de los conceptos que se trabajan en la secundaria y en la Universidad. Se proponen actividades para trabajar la Teoría de los Números.
Resumo:
Explicación y demostración del concepto de máximo común divisor, basado en la teoría de los ideales del anillo de los números enteros.
Resumo:
En este trabajo veremos como un prestamista, antes de conceder un préstamo, puede determinar la distribución de posibilidad del tipo de interés medio, equivalente a los tipos de interés inciertos que habrá en el mercado durante la duración del préstamo, los cuales supondremos que son estimadores por medio de números borrosos. Una vez determinada la distribución de posibilidad del interés medio, basandonos en la teoría de posibilidades y en los métodos de comparación entre subconjuntos borrosos, veremos como la lógica borrosa puede ayudar al prestamista a adoptar una decisión sobre el tipo de interés constante que debe ofertar en dicho préstamo.
Resumo:
Esta investigación desarrolla material curricular para la implementación de algunas cuestiones de teoría de juegos en la educación secundaria en el ámbito de la matemática discreta. Para ello se diseñan actividades de carácter formativo que potencien valores de justicia, cooperación, negociación y convivencia democrática. Se trata de dar a conocer algunos modelos estratégicos que se pueden convertir en herramientas útiles para la resolución de conflictos en la vida cotidiana y, así, desarrollar las amplias posibilidades que aporta esta rama de las matemáticas.
Resumo:
Sabemos que los números trascendentes son aquellos que no son raíces de ecuaciones algebraicas con coeficientes racionales. Su origen, el origen de la trascendencia, se remonta a los griegos con la aparición de problemas como la duplicación del cubo, trisección del ángulo y cuadratura del círculo irresolubles con regla y compás. Entre 1844 fecha en la que nace el primer número trascendente y 1900 fecha en la que Hilbert plantea el llamado séptimo problema de Hilbert cuya solución, obtenida en 1934 por Gelfand y Scheider, a partir de los trabajos de Polya en 1914 y Siegel en 1929, abren las puertas de una nueva era para esta teoría. En este intervalo de tiempo se produjeron numerosos eventos importantes que vamos a tratar de desarrollar.