90 resultados para Excipients for tablets
em Scielo Saúde Pública - SP
Resumo:
The aim of this work is to develop and validate a dissolution test for glibenclamide tablets. Optimal conditions to carry out the dissolution test are 500 mL of phosphate buffer at pH 8.0, paddles at 75 rpm stirring speed, time test set to 60 min and using equipment with six vessels. The derivative UV spectrophotometric method for determination of glibenclamide released was developed, validated and compared with the HPLC method. The UVDS method presents linearity (r² = 0.9999) in the concentration range of 5-14 µg/mL. Precision and recoveries were 0.42% and 100.25%, respectively. The method was applied to three products commercially available on the Brazilian market.
Resumo:
The microbiological bioassay, UV-spectrophotometry and HPLC methods for assaying gatifloxacin in tablets were compared. Validation parameters such as linearity, precision, accuracy, limit of detection and limit of quantitation were determined. Beer's law was obeyed in the ranges 4.0-14.0 μg/mL for HPLC and UV-spectrophotometric method, and 4.0-16.0 μg/mL for bioassay. All methods were reliable within acceptable limits for antibiotic pharmaceutical preparations being accurate, precise and reproducible. The bioassay and HPLC are more specific than UV-spectrophotometric analysis. The application of each method as a routine analysis should be investigated considering cost, simplicity, equipment, solvents, speed, and application to large or small workloads.
Resumo:
This work reports the validation of an analytical UV spectrophotometric method to assay dexamethasone in tablets (assay and dissolution studies). The method was linear in the range between 1 and 30 µg mL-1 presenting a good correlation coefficient (r = 0.9998, n = 7). Precision and accuracy analysis showed low relative standard deviation (< 2.00%) and good percentual recoveries (95-105%). The procedure was linear, accurate, precise, and robust. The method is simple, and it has low cost. It does not use polluting reagents and can be applied in dissolution studies, being an adequate alternative to assay dexamethasone in tablets.
Resumo:
A dissolution test for telithromycin tablets was validated and developed. In order to choose the most discriminatory one, the conditions to carry out are 900 mL of sodium phosphate buffer at pH 7.5, paddles at 50 rpm stirring speed, time test set to 60 min and using USP apparatus 2 with paddles. The UV spectrophotometric method for determination of telithromycin released was developed and validated. The method presents linearity (r = 1) in the concentration range of 20-60 µg/mL. Precision and recoveries were good, 100.62 and 97.06%, respectively. The method was successfully used for the dissolution test of telithromycin tablets.
Resumo:
Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.
Resumo:
An alternative methodology for analysis of acetaminophen (Ace), phenylephrine (Phe) and carbinoxamine (Car) in tablets by ion-pair reversed phase high performance liquid chromatography was validated. The pharmaceutical preparations were analyzed by using a C18 column (5 μm, 300 mm, 3.9 mm) and mobile phase consisting of 60% methanol and 40% potassium monobasic phosphate aqueous solution (62.46 mmol L-1) added with 1 mL phosphoric acid, 0.50 mL triethylamine and 0.25 g sodium lauryl sulfate. Isocratic analysis was performed under direct UV detection at 220 nm for Phe and Car and at 300 nm for Ace within 5 min.
Resumo:
The aim of this work was the development of a dissolution method for benznidazole (BNZ) tablets. Three different types of dissolution media, two stirring speeds and apparatus 2 (paddle) were used. The accomplishment of the drug dissolution profiles was compared through the dissolution efficiency. The assay was performed by spectrophotometry at 324 nm. The better conditions were: sodium chloride\hydrochloride acid buffer pH 1.2 with stirring speed of 75 rpm, volume of 900 mL and paddle as apparatus. Ahead of the results it can be concluded that the method developed consists in an efficient alternative for assays of dissolution for benznidazole tablets.
Resumo:
A capillary electrophoresis (CE) method was developed and validated for determination of cetirizine dihydrochloride in tablets and compounded capsules. The electrophoretic separation was performed in an uncoated fused-silica capillary (40 cm x 50 μm i.d.) using 20 mmol L-1 sodium tetraborate buffer (pH 9.3) as background electrolyte, a hydrodinamic sample injection at 50 mBar for 5 s, 20 KV applied voltage at 25 °C, and detection at 232 nm. The proposed method was compared with the high performance liquid chromatographic (HPLC) method previously validated for this drug, and statistical analysis showed no significant difference between the techniques.
Resumo:
This work aimed the development and validation of a new dissolution test for ornidazole coated tablets. The dissolution conditions were determined after testing Sink conditions, dissolution medium, apparatus, stirring speed, 24 h stability and medium filtration influence. The best conditions were paddle at a stirring speed of 75 rpm and 900 mL of 0.1 M HCl. A new HPLC quantification method was developed and validated. The dissolution test and quantification method showed to be adequate for their purposes and could be applied for quality control of ornidazole coated tablets, since there is no official monograph.
Resumo:
A rapid, economical, reproducible, and simple direct spectrophotometric method was developed and validated for the assay of nitazoxanide in pharmaceutical formulations. Nitazoxanide concentration was estimated in water at 345 nm and pH 4.5. The method was suitable and validated for specificity, linearity, precision, and accuracy. There was no interference of the excipients in the determination of the active pharmaceutical ingredient. The proposed method was successfully applied in the determination of nitazoxanide in coated tablets and in powders for oral suspension. This method was compared to a previously developed and validated method for liquid chromatography to the same drug. There was no significative difference between these methods for nitazoxanide quantitation.
Resumo:
A derivative UV spectrophotometric method for determination of estradiol valerate in tablets was validated. The parameters specificity, linearity, precision, accuracy, limit of detection and limit of quantitation were studied according to validation guidelines. The first-order derivative spectra were obtained at N = 5, Δλ = 4.0 nm, and determinations were made at 270 nm. The method showed specificity and linearity in the concentration range of 0.20 to 0.40 mg mL-1. The intra and interday precision data demonstrated the method has good reproducibility. Accuracy was also evaluated and results were satisfactory. The proposed method was successfully applied to a pharmaceutical formulation.
Resumo:
For determination of aliskiren in commercial samples, an analytical UV spectrophotometric method was developed and validate according to ICH guideline. The method was linear in the range between 40 and 100 μg mL-1 (r² = 0.9997, n = 7) and exhibited suitable specificity, accuracy, precision, and robustness. It is simple, it has low cost, and it has low use polluting reagents. Therefore, the proposed method was successfully applied for the assay and dissolution studies of aliskiren in tablet dosage forms, and the results were compared to a validated RP-LC method, showing non-significant difference (P > 0.05).
Resumo:
The chemical stability of enalapril drug substance and tablets was studied by a stability-indicating liquid chromatographic method. Stress testing was performed on drug substance under various conditions. Accelerated stability testing was carried out for different formulations of enalapril tablets. Chromatographic separation was achieved on a RP-18 column, using a mobile phase of methanol phosphate buffer at 1.0 mL min"1 and UV detection. Degradation of the drug substance was greater under hydrolytic conditions. After 180 days of accelerated stability testing most enalapril tablets showed more than 10% of degradation. Enalapril drug substance and tablets showed instability under stress and accelerated testing respectively, with possible implications on the therapeutic activity.
Resumo:
Four new extraction-free spectrophotometric methods have been established for the quantitation of famotidine (FMT). The methods are based on the formation of yellow ion-pair complexes between FMT and four sulphonphthalein dyes viz., bromothymol blue (method A), bromophenol blue (method B), bromocresol purple (method C) and bromocresol green (method D) in dioxane or acetone medium. The experimental variables such as reagent concentration, solvent medium and reaction time have been carefully optimized to achieve the highest sensitivity. The proposed methods were applied successfully to the determination of famotidine in tablets with good accuracy and precision and without interferences from common excipients. The results obtained by the proposed methods were compared favorably with those of the reference method.
Resumo:
A method using liquid chromatography has been developed and validated for determination of buclizine in pharmaceutical formulations and in release studies. Isocratic chromatography was performed on a C18 column with methanol:water (80:20 v/v, pH 2.6) as mobile phase, at a flow rate of 1.0 mL/min, and UV detection at 230 nm. The method was linear, accurate, precise, sensible and robust. The dissolution test was optimized and validated in terms of dissolution medium, apparatus agitation and rotation speed. The presented analytical and dissolution procedures can be conveniently adopted in the quality and stability control of buclizine in tablets and oral suspension.