232 resultados para Dissolution test
em Scielo Saúde Pública - SP
Resumo:
The aim of this work is to develop and validate a dissolution test for glibenclamide tablets. Optimal conditions to carry out the dissolution test are 500 mL of phosphate buffer at pH 8.0, paddles at 75 rpm stirring speed, time test set to 60 min and using equipment with six vessels. The derivative UV spectrophotometric method for determination of glibenclamide released was developed, validated and compared with the HPLC method. The UVDS method presents linearity (r² = 0.9999) in the concentration range of 5-14 µg/mL. Precision and recoveries were 0.42% and 100.25%, respectively. The method was applied to three products commercially available on the Brazilian market.
Resumo:
A dissolution test for telithromycin tablets was validated and developed. In order to choose the most discriminatory one, the conditions to carry out are 900 mL of sodium phosphate buffer at pH 7.5, paddles at 50 rpm stirring speed, time test set to 60 min and using USP apparatus 2 with paddles. The UV spectrophotometric method for determination of telithromycin released was developed and validated. The method presents linearity (r = 1) in the concentration range of 20-60 µg/mL. Precision and recoveries were good, 100.62 and 97.06%, respectively. The method was successfully used for the dissolution test of telithromycin tablets.
Resumo:
This work describes the development and validation of a dissolution test for 50 mg losartan potassium capsules using HPLC and UV spectrophotometry. A 2(4) full factorial design was carried out to optimize dissolution conditions and potassium phosphate buffer, pH 6.8 as dissolution medium, basket as apparatus at the stirring speed of 50 rpm and time of 30 min were considered adequate. Both dissolution procedure and analytical methods were validated and a statistical analysis showed that there are no significant differences between HPLC and spectrophotometry. Since there is no official monograph, this dissolution test could be applied for quality control routine.
Resumo:
This work aimed the development and validation of a new dissolution test for ornidazole coated tablets. The dissolution conditions were determined after testing Sink conditions, dissolution medium, apparatus, stirring speed, 24 h stability and medium filtration influence. The best conditions were paddle at a stirring speed of 75 rpm and 900 mL of 0.1 M HCl. A new HPLC quantification method was developed and validated. The dissolution test and quantification method showed to be adequate for their purposes and could be applied for quality control of ornidazole coated tablets, since there is no official monograph.
Resumo:
A dissolution test for in vitro evaluation of tablet dosage forms containing 10 mg of rupatadine was developed and validated by RP-LC. A discriminatory dissolution method was established using apparatus paddle at a stirring rate of 50 rpm with 900 mL of deaerated 0.01 M hydrochloric acid. The proposed method was validated yielding acceptable results for the parameters evaluated, and was applied for the quality control analysis of rupatadine tablets, and to evaluate the formulation during an accelerated stability study. Moreover, quantitative analyses were also performed, to compare the applicability of the RP-LC and the LC-MS/MS methods.
Resumo:
A simple liquid chromatographic method was optimized for the quantitative determination of terbinafine in pharmaceutical hydroalcoholic solutions and tablets, and was also employed for a tablet dissolution test. The analysis was carried out using a RP-C18 (250 mm × 4.6 mm, 5 μm) Vertical® column, UV-Vis detection at 254 nm, and a methanol-water (95:5, v/v) mobile phase at a flow-rate of 1.2 mL min-1. Method validation investigated parameters such as linearity, precision, accuracy, robustness and specificity, which gave results within the acceptable range. The tablets dissolution was quite fast: 80% of the drug was dissolved within 15 min.
Resumo:
This work describes the development and validation of a dissolution test for 60 mg of diltiazem hydrochloride in immediate release capsules. The best dissolution in vitro profile was achieved using potassium phosphate buffer at pH 6.8 as the dissolution medium and paddle as the apparatus at 50 rpm. The drug concentrations in the dissolution media were determined by UV spectrophotometry and HPLC and a statistical analysis revealed that there were significant differences between HPLC and spectrophotometry. This study illustrates the importance of an official method for the dissolution test, since there is no official monograph for diltiazem hydrochloride in capsules.
Resumo:
A simple, precise, specific, repeatable and discriminating dissolution test for primaquine (PQ) matrix tablets was developed and validated according to ICH and FDA guidelines. Two UV assaying methods were validated for determination of PQ released in 0.1 M hydrochloric acid and water media. Both methods were linear (R²>0.999), precise (R.S.D.<1.87%) and accurate (97.65-99.97%). Dissolution efficiency (69-88%) and equivalence of formulations (f2) was assessed in different media and apparatuses (basket/100 rpm and paddle/50 rpm) tested. Discriminating condition was 900 mL aqueous medium, basket at 100 rpm and sampling times at 1, 4 and 8 h. Repeatability (R.S.D.<2.71%) and intermediate precision (R.S.D.<2.06%) of dissolution method were satisfactory.
Resumo:
A method using liquid chromatography has been developed and validated for determination of buclizine in pharmaceutical formulations and in release studies. Isocratic chromatography was performed on a C18 column with methanol:water (80:20 v/v, pH 2.6) as mobile phase, at a flow rate of 1.0 mL/min, and UV detection at 230 nm. The method was linear, accurate, precise, sensible and robust. The dissolution test was optimized and validated in terms of dissolution medium, apparatus agitation and rotation speed. The presented analytical and dissolution procedures can be conveniently adopted in the quality and stability control of buclizine in tablets and oral suspension.
Resumo:
Commonly used HPLC acetonitrile solvent has been through a worldwide shortage with a cost increase in 2008 and 2009. In order to get around this situation, a method by RP-HPLC employing methanol and aqueous acid mobile phase was developed and validated to evaluate simvastatin. The quality control assay and dissolution studies of this lipid-lowering drug were performed in diluents methanol and 0.01 M phosphate buffer with 0.5% SDS, pH 7, respectively. Dissolution test aliquots did not go through sample treatment, as described in USP SIM tablets monograph by ultraviolet spectrophotometry. The proposed method is fast, simple, feasible and robust.
Resumo:
An HPLC method was validated to assay lamivudine and zidovudine combined in tablets. The chromatographic separation was carried out using methanol and acetate buffer pH 6.5 (50:50 v/v) and a RP-18 column, as mobile and stationary phase, respectively. The UV detection was at 270 nm. The method was linear in the range of 24 - 36 µg/mL (lamivudine) and 48 - 72 µg/mL (zidovudine). The recovery (accuracy) ranged from 101.35% to 103.04% and the precision (repeatability and intermediate precision) was less than 2%. The method can be also applied to the quantification of these drugs in the dissolution test of tablets containing both drugs.
Resumo:
The aims of this study were to formulate calcium-alginate beads containing glibenclamide, characterize the resulting microparticles, evaluate the release characteristics of this type of delivery system in an in vitro dissolution test, and compare it with two commercially available trademarks (Daonil® and Glibetab®). We obtained glibenclamide loaded calcium-alginate beads with a rough surface and a particle size between 150-200 µm. For the in vitro dissolution test Daonil® at 45 min showed a Q > 70%, whereas Glibetab® and glibenclamide calcium-alginate beads a Q < 70%; in spite of that glibenclamide calcium-alginate beads showed significant release properties.
Resumo:
This work describes the establishment of dissolution test conditions for 75 mg cinnarizine capsules using a multivariate approach. A 2³ full factorial design was carried out to achieve the best conditions and HCl 0.1 mol L-1 as dissolution medium, basket as apparatus at 100 rpm and collect time at 30 min were considered adequate. The quantification was carried out by spectrophotometry at 251 nm. Both dissolution procedure and analytical method were validated and all parameters were within the acceptable limits. Since there is no official monograph for this pharmaceutical product, this dissolution test could be applied for quality control routine.
Resumo:
This study describes unpublished research on improving the solubility of benznidazole by the formation of an inclusion complex. The cyclodextrins selected were αCD, βCD, γCD, HPβCD, RMβCD and SBβCD. All complexes were obtained in solution, presenting 1:1 stoichiometry according to the phase solubility diagram. The highest association constants were obtained with RMβCD and SBβCD, being selected for attainment of solid state complexes. These were characterized using XRD, SEM and dissolution test. The data obtained suggest the formation of complexes and indicate that these may provide a promising alternative way of developing solid doses of drug with suitable biopharmaceutical properties.
Resumo:
This paper reports the development and validation of a new analytical method using UV spectrophotometry to quantify carvedilol (CRV) in hydrophilic matrices and raw material. This method was shown to be linear, accurate, precise, robust and to have adequate limits of quantification and detection (LQ and LD, respectively), allowing its use in the dissolution test of hydrophilic matrices. The content of CRV determined through this method was compared with two previously validated methods based on the reference techniques of High Performance Liquid Chromatography (HPLC) and Potentiometric Titrations (PT). ANOVA confirmed the equivalence of these methods, showing no significant differences.