123 resultados para high performance
Resumo:
The development of Chiral Stationary Phases (CSPs) for high performance liquid chromatography has been studied by various researches around the world, especially, since 1980. This simple interest has been transformed into a tool of great technological value for the industrial community and scholars in general providing the existence of several CSPs, which act through different mechanisms of chiral discrimination. This paper describes the main types of CSPs that are used for the resolution of the majority of chiral compounds.
Resumo:
A method for quantifying urinary 2,5-hexanedione was optimized and validated. Urine samples were hydrolyzed and derivatized with 2,4-dinitrophenylhydrazine. The analyte was separated in a high performance liquid chromatography system with a diode array detector, using a C18 column (150 x 4.6 mm, p.d. 5 µm) and a mobile phase composed of phosphate buffer pH 2.3:acetonitrile (40:60, v/v), at a flow rate of 1 mL/min. The chromatograms were monitored at 334 nm. Retention time was 7.3 minutes. Main validation parameters were: coefficient of determination: 0.9994, accuracy: 96 to 107%; intra-assay precision (RSD): 3.08 to 6.72%; inter-assay precision (RSD): 2.54 to 8.17% and limit of quantitation of 0.19 µg/mL.
Resumo:
This work describes the development and validation of a dissolution test for 60 mg of diltiazem hydrochloride in immediate release capsules. The best dissolution in vitro profile was achieved using potassium phosphate buffer at pH 6.8 as the dissolution medium and paddle as the apparatus at 50 rpm. The drug concentrations in the dissolution media were determined by UV spectrophotometry and HPLC and a statistical analysis revealed that there were significant differences between HPLC and spectrophotometry. This study illustrates the importance of an official method for the dissolution test, since there is no official monograph for diltiazem hydrochloride in capsules.
Resumo:
Emerging organic pollutants (EOP) include many environmental contaminants based on commercial products such as pharmaceuticals, personal care products, detergents, gasoline, polymers, etc. EOP may be candidates for future regulation as they offer potential risk to environmental and human health due to their continual entrance into the environment and to the fact that even the most modern wastewater treatment plants are not able to totally transform / remove these compounds. High performance liquid chromatography is recommended to separate emerging organic pollutants with characteristics of high polarity and low volatility, especially pharmaceuticals, from environmental matrices.
Resumo:
This review describes the advantages and disadvantages of using capillary liquid chromatography (CLC), which is considered the newest member in the analytical separation science arsenal. Although CLC has tremendous potential for being the next major innovation in separatory analysis, it has not yet obtained great popularity compared to conventional high performance (and ultra-high performance) liquid chromatography. Comparisons are made between these techniques and some of the reasons that CLC has not yet reached its potential will be advanced.
Resumo:
A rapid analytical approach, suitable to characterize the compounds present in the aqueous and methanol extracts prepared from the aerial parts of Indigofera hirsute, was developed. The method based on high-performance liquid chromatography coupled to mass spectrometry, electrospray positive ionization and detection by time of flight (HPLC-ESI-MS-TOF) identified, tryptophan, uracil, rutin, kaempferol-3-O-β-D-glucopyranoside, gallic acid and methyl gallate. The antiradical activity of this extract was evaluated using DPPH assay, with gallic acid as antiradical pattern. The study revealed the antiradical activity of methyl galatte (EC50 = 5 ± 0.3 µg mL-1) galic acid (EC50 = 5 ± 0.2 µg mL-1) and rutin (EC50 = 21.6 ± 0.6 µg m L-1), isolated from methanol extract (EC50 = 67.7 ± 0.9 µg mL-1), which showed strong antiradical activity.
Resumo:
This paper reports on a modification of the procedures originally described in the French Pharmacopoeia for the UV-visible spectrometric analysis of flavonoids, and proposes a validation of the method and its application in the determination of total flavonoids from sugarcane (Saccharum officinarum) leaves and vinasse. An analysis of precision and accuracy revealed a low relative standard deviation (< 5.0%) and a good recovery percentages (99.79 and 98.34%). A comparison of the spectrometric results against those obtained by high performance liquid chromatography (HPLC-UV) demonstrated complete compatibility between the modified French Pharmacopoeia (spectrometric) and HPLC-UV methods
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
The content of isoorientin in passion fruit rinds (Passiflora edulis fo. flavicarpa O. Degener) was determined by HPTLC (high performance thin layer chromatography) with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P. edulis (92.275 ± 0.610 mg L-1) than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus) infection (28.931 ± 0.346 mg L-1). The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P. edulis rinds as a natural source of flavonoids or as a possible functional food.
Resumo:
A reversed-phase HPLC method was developed and validated to separate and simultaneously quantify the association of betamethasone sodium phosphate (BP) and betamethasone dipropionate (BD) in injectable suspensions. Chromatographic conditions were ternary gradient elution at 1.6 mL/min on a C18 column with 254 nm. The linearity of the method was established in the range 120 to 280 mg/mL BD, and 48 to 112 mg/mL BP. The RSD of intermediate precision of the method was <1% and recoveries were 99-101% for both drugs. The method proved selective, linear, precise, accurate and robust for quantifying BP and BD in commercial injectable suspensions.
Resumo:
In this study, an analytical method was developed and validated for quantitation of the drug bevacizumab (Avastin®) by high performance liquid chromatography (HPLC). The HPLC column was a BioSuite 250® HR SEC, 300 x 7.8 mm x 5 µm (Waters, USA). The mobile phase consisted of phosphate buffered saline (PBS). The results revealed that the method was specific, precise, accurate, robust and linear (r² = 0.998) from 5 to 75 µg mL-1. Therefore, this method can be used in drug release studies or in quality control ampoules of the drug.
Resumo:
Tibolone is a synthetic steroid used for prevention of bone loss and treatment of menopause symptoms. This article describes the development and validation of an analytical method to quantify tibolone in capsules using high performance liquid chromatography with UV detection. After chromatography conditions are established the validation parameters evaluated were specificity, linearity, precision, accuracy, detection and quantification limits and robustness. The method developed is effective to analyze tibolone in capsules, being able to be used in quality control laboratory routine.
Resumo:
Paclobutrazol is growth regulator of plants that has low mobility in soil and therefore has accumulated. The objective of this study was to investigate the paclobutrazol biodegradation in two soils from the São Francisco River Valley. The biodegradation experiments were conducted in batch using paclobutrazol and paclobutrazol added glycerol. The experiments were performed in sterile and nonsterile conditions using a mixed culture of Pseudomonas. The concentration of paclobutrazol was determined by high performance liquid chromatography. The biodegradation reached 43% in 14 days of experiments with only paclobutrazol and 70% in 28 days of experiments that contained glycerol and paclobutrazol.
Resumo:
The present work consists of the development and validation of analytical method for evaluation of glycyrrhizic acid, salicylic acid, and caffeine in chitosan-alginate nanoparticles by high performance liquid chromatography. Method validation investigated parameters such as linearity, precision, accuracy, robustness and specificity, which gave results within the acceptable range. The methods were applied to nanoparticles suspensions containing the drugs and were able to determine the entrapment efficiency successfully. The best entrapment efficiency was achieved with the glycyrrhizic acid (95.4%).
Resumo:
A high performance liquid chromatographic-diode array detection method for the determination of busulfan in plasma was developed and validated. Sample preparation consisted of protein precipitation followed by derivatization with sodium diethyldithiocarbamate and liquid-liquid extraction with methyl-tert-butyl ether. Chromatograms were monitored at 277 nm. Separation was carried out on a Lichrospher RP 18 column (5 µm, 250 x 4 mm). The mobile phase consisted of water and acetonitrile (20:80, v/v). The method presented adequate specificity, linearity, precision and accuracy and allowed reliable determination of busulfan in clinical plasma samples, being applied to three patients submitted to bone marrow transplantation.