267 resultados para fluxo urinário
Resumo:
This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA® anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the eletrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L-1), nitrate ions (6 mg L-1) and nitrite ions (4.5 mg L-1).
Resumo:
This work reports the growth of corundum crystals by the flux method. The main objective was the evaluation of versatility, effectiveness and real possibilities of the flux method to the synthesis and doping of monocrystals with impurities of particular interest. In this work the chosen impurities were i) Cr and ii) Fe and Ti, aiming the synthesis of rubies and sapphires, respectively. The crystals were grown by heating a mixture of Al2O3:Cr or Al2O3:Fe:Ti and flux (MoO3). The maximum crystal size obtained was 1.0 mm, all transparent, presenting well developed faces, bipiramidal hexagonal shape, and showing a typical red (ruby) and/or light blue (sapphire) color. EDX and XPD experiments were performed in order to characterize some of the synthesized crystals. All crystallized specimens presented the α-alumina atomic structure.
Resumo:
The decomposition of detergent powder samples in a microwave oven and autoclave was evaluated. To establish the best experimental conditions a 2(5) factorial design was performed, varying the conditions in autoclave and microwave digestion and flow system parameters for the determination of phosphorus. The best composition was: 0.2 mL sulfuric acid; 500 W power and a 2 min time interval; 6 mmol L-1 of ascorbic acid and 16 mmol L-1 of molybdate to flow system. This factor levels use less reagents than the reference method. No statistically significant differences were found between the autoclave and microwave oven responses at the 95% confidence level.
Resumo:
This paper reports the development of an easy, fast and effective procedure for the verification of the ideal gas law in splitless injection systems in order to improve the response. Results of a group of pesticides were used to demonstrate the suitability of the approach. The procedure helps establish experimental parameters through theoretical aspects. The improved instrumental response allowed extraction with lower sample volumes, the minimization of time and costs and the simplification of sample preparation.
Resumo:
A flow system based on the sandwich technique is proposed for the sequential determination of ascorbic acid, dipyrone, acetylcysteine, captopril and paracetamol. The procedure is based on the reduction of Cu(II) by the analytes followed by the spectrophotometric measurement of the complex of Cu(I) with 2,2'-biquinoline 4,4'-dicarboxylic acid. Linear responses were achieved in the µmol L-1 range, with coefficients of variation better than 1.7%. Sampling rate was estimated as 60 determinations per hour, consuming 230 µg of BQA and generating 2.5 mL of waste per determination. Results for commercial samples agreed with those obtained by procedures recommended by the American and European pharmacopeias at the 95% confidence level.
Resumo:
The potentialities and applications of the Multiple Pulse Amperometric detection (MPA) coupled with Flow Injection Analysis (FIA) are evaluated. Important aspects as cleaning and activation of electrode surface, indirect and simultaneous analysis of electroactive compounds and the use of the internal standard method for quantifications utilizing FIA-MPA are presented. The main parameters concerning the detection of electroactive analytes by multiple pulse amperometric detection in flowing solutions were also discussed. In addition, aspects such as flow rate, sample volume, application time of the potential pulses and instrumentation necessary for implementing of the method were also addressed.
Resumo:
A flow injection spectrophotometric procedure for the determination of glyphosate in commercial formulations of herbicides is proposed. The determination is based on the reaction of glyphosate and p-dimethylaminocinnamaldehyde, in acid medium, yielding a colored compound (l máx = 495 nm). Under optimal conditions, Beer's law is obeyed in a concentration range 40-640 mg mL-1 with a correlation coefficient of 0.9996. The detection limit was 8.60 mg mL-1 for glyphosate. The method was successfully applied for the determination of glyphosate in commercial formulations of herbicides. Recovery of glyphosate from various commercial samples of herbicides range from 91.0 to 110%.
Resumo:
A simple flow system with multiple pulse amperometric detection using a single working electrode is proposed for simultaneous determination of ascorbic (AA) and acetylsalicylic (AAS) acids in pharmaceutical formulations. The procedure is based on application of two potential pulses: 0.90 V/50 ms: oxidation and determination of AA without the interference of AAS; 1.35 V/50 ms: oxidation of both compounds and quantification of AAS by current subtraction using a correction factor. Sampling rate was estimated as 125 injections per hour and the limits of detection were 0.17 and 0.16 µmol L-1 for AA and AAS, respectively. Results for commercial samples agreed with those obtained using HPLC.
Resumo:
This paper describes selective molecularly imprinted solid-phase extraction of ttMA from urine samples followed by derivatization and analysis by gas chromatography/mass spectrometry (GC/MS). The analytical calibration curve ranged from 0.3 to 7.0 mg L-1 (r = 0.999) and the limit of quantitation (LOQ) was 0.3 mg L-1. The method was applied for the determination of ttMA in urine samples from smokers and concentrations detected ranged from < LOQ to 1.64 mg L-1. Thus, the proposed method proved adequate for the determination of urinary ttMA in the biomonitoring of occupational exposure to low levels of benzene.
Resumo:
A multi-commuted flow system was developed to determine propylthiouracil (PTU) based on the reaction of its thiol form with iminoquinone radical generated by the oxidation of N,N-dimethyl-p-phenylenediamine in an alkaline medium. PTU can be found in tautomeric forms and the tautomeric equilibrium was displaced to enhance the thiol form. However, the reaction product is unstable and its residence time in the flow path was carefully investigated. The proposed procedure showed good precision (< 1.5%) and a limit of detection (3s) of 0.11 mg L-1. High recoveries were obtained in the validation test. The procedure was employed for propylthiouracil determination in medications.
Resumo:
A didactic experiment is proposed aimed to extend the Flow Injection Analysis (FIA) based methodology to the area of physical chemistry/chemical reactors for undergraduate labs. Our prime objective was to describe the use of a gradient chamber for determination of the rate constant for the reaction between crystal violet and the hydroxide ion. The study was complemented by determining the effect of temperature on the rate constant. The kinetic parameters, activation energy and reaction rate constant are determined based on an assumption of rate orders. The main didactic advantages of the proposed experimental set-up are the use of less reagents, contributing to a more environmental friendly experiment. The experiment illustrates also the reduction of associated errors and time by using automated analysis owing to decreased operator manipulation.
Resumo:
This paper describes the use of the open source hardware platform, denominated "Arduino", for controlling solenoid valves for solutions handling in flow analysis systems. System assessment was carried out by spectrophotometric determination of iron (II) in natural water. The sampling rate was estimated as 45 determinations per hour and the coefficient of variation was lower than 3%. Per determination, 208 µg of 1-10-phenanthroline and ascorbic acid were consumed, generating 1.3 mL of waste. "Arduino" proved a reliable microcontroller with low cost and simple interfacing, allowing USB communication for solenoid device switching in flow systems.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
This work describes a simple and inexpensive flow injection analysis system in which gravity force provides fluid propulsion while needles for insulin administration or metallic wires act as electrodes for amperometric detection. The proposed system was able to demonstrate the influence of several operational parameters on the transient signals. Moreover, this system was successfully used to evaluate both the stoichiometry of Cu2+-EDTA complex and the effect of pH on the kinetics of the reaction between ferricyanide and ascorbic acid. Therefore, the proposed system can be regarded as an efficient and accessible didactic tool for the teaching of FIA principles.
Resumo:
AbstractA device comprising a lab-made chamber with mechanical stirring and computer-controlled solenoid valves is proposed for the mechanization of liquid-liquid extractions. The performance was demonstrated by the extraction of ethanol from biodiesel as a model of the extraction of analytes from organic immiscible samples to an aqueous medium. The volumes of the sample and extractant were precisely defined by the flow-rates and switching times of the valves, while the mechanic stirring increased interaction between the phases. Stirring was stopped for phase separation, and a precise time-control also allowed a successful phase separation (i.e., the absence of the organic phase in the aqueous extract). In the model system, a linear response between the analytical response and the number of extractions was observed, indicating the potential for analyte preconcentration in the extract. The efficiency and reproducibility of the extractions were demonstrated by recoveries of ethanol spiked to biodiesel samples within 96% and 100% with coefficients of variation lower than 3.0%.