6 resultados para Parasitologia
em Universidade Federal de Uberlândia
Resumo:
T. gondii can infect the gut mucosa by direct invasion of epithelial cells in the small intestine and these cells may respond directly to infection promoting a local immune response. C57BL/6 mice orally infected with a high parasitic load of T.gondii are highly susceptible, presenting a lethal ileitis. Recently, it was demonstrated that pretreatment with STAg protects C57BL/6 mice against intestinal pathology in oral T. gondii infection. To investigate the mechanisms induced by STAg in the small intestine in oral T.gondii infection, BALB/c and C57BL/6 mice were treated with STAg 48 hours before oral infection with 30 ME-49 cysts and sacrificed at 8 days of infection. Previous treatment with STAg were able of decrease parasitism and pathology in peripheral organs of BALB/c and C57BL/6 mice and induced a increase in amounts of goblet cells, IgA positive cells, Paneth cells and expression of cryptidin in the small intestine of both lineages of mice, moreover BALB/c mice presented higher amount of these cells comparing with C57BL/6 mice. The results suggests that STAg is able of promoting protective mechanisms in both lineages of mice, although these protection is more evidenced in BALB/c mice, and these mechanisms could be in part mediated by increase in goblet, Paneth and local secretion of IgA in the small intestine of mice orally infected with T.gondii.
Resumo:
Introduction: The production of KPC (Klebsiella pneumoniae carbapenemase) has become an important mechanism of carbapenem-resistance among Enterobacteriaceae strains. In Brazil, KPC is already widespread and its incidence has increased significantly, reducing treatment options. The “perfect storm” combination of the absence of new drug developmentand the emergence of multidrug-resistant strains resulted in the need for the use of older drugs, with greater toxicity, such as polymyxins. Aims: To determine the occurrence of carbapenemase-producing strains in carbapenem-resistant Enterobacteriaceae isolated from patients with nosocomial infection/colonization during September/2014 to August/2015, to determine the risk factors associated with 30-day- mortality and the impact of inappropriate therapy. Materials and Methods: We performed a case control study to assess the risk factors (comorbidities, invasive procedures and inappropriate antimicrobial therapy) associated with 30-day-mortality, considering the first episode of infection in 111 patients. The resistance genes blaKPC, blaIMP, blaVIM and blaNDM-1 were detected by polymerase chain reaction technique. Molecular typing of the strains involved in the outbreak was performed by pulsed field gel electrophoresis technique. The polymyxin resistance was confirmed by the microdilution broth method. Results: 188 episodes of carbapenem-resistant Enterobacteriaceae infections/colonizations were detected; of these, 122 strains were recovered from the hospital laboratory. The presence of blaKPC gene were confirmed in the majority (74.59%) of these isolates. It was not found the presence of blaIMP , blaVIM and blaNDM-1 genes. K. pneumoniae was the most frequent microorganism (77,13%), primarily responsible for urinary tract infections (21,38%) and infections from patients of the Intensive Care Unit (ICU) (61,38%). Multivariate statistical analysis showed as predictors independently associated with mortality: dialysis and bloodstream infection. The Kaplan-Meier curve showed a lower probability of survival in the group of patients receiving antibiotic therapy inappropriately. Antimicrobial use in adult ICU varied during the study period, but positive correlation between increased incidence of strains and the consumption was not observed. In May and July 2015, the occurrence rates of carbapenem-resistant Enterobacteriaceae KPC-producing per 1000 patient-days were higher than the control limit established, confirming two outbreaks, the first caused by colistin-susceptible KPC-producing K. pneumoniae isolates, with a polyclonal profile and the second by a dominant clone of colistin-resistant (≥ 32 μg/mL) KPC-producing K. pneumoniae. The cross transmission between patients became clear by the temporal and spatial relationships observed in the second outbreak, since some patients occupied the same bed, showing problems in hand hygiene adherence among healthcare workers and inadequate terminal disinfection of environment. The outbreak was contained when the ICU was closed to new admissions. Conclusions: The study showed an endemicity of K. pneumoniae KPC-producing in adult ICU, progressing to an epidemic monoclonal expansion, resulted by a very high antibiotic consumption of carbapenems and polymyxins and facilitated by failures in control measures the unit.
Resumo:
Chagas disease, caused by the parasite Trypanosoma cruzi, is the cause of Chronic chagasic cardiomyopathy (CCC). The prospection of innovative therapeutic agents against CCC is a major task. The recombinant form of 21 (rP21), a secreted T. cruzi protein involved in host cell invasion and on progression of chronic inflammatory processes have been studied as a potential novel therapeutic target. Our present work aimed to verify and investigate the impact of rP21 in the formation of blood vessels in vitro and in vivo. First, tEnd cells were treated with different concentrations of rP21 or bacterial extract and viability and cellular adhesion were evaluated by MTT and angiogenesis inhibition by Matrigel tube formation assay and murine model. To verify the proteolytic activity of rP21 on extracellular matrix (ECM) components, fibrinogen, matrigel and fibronectin was incubated with rP21 or not. In addition, we performed proliferation assays and cell cycle analysis. Furthermore, the accumulation and distribution of F-actin was determined by Phalloidin staining using ImageJ software. Finally, tEnd cells were incubated with rP21 and the mRNA levels were analyzed by real-time PCR. Our results showed that rP21 did not alter cell viability and adhesion, but strongly inhibited vessel formation in vitro and in vivo. Tube formation assay showed that angiogenesis inhibition was dependent of the CXCR4-rP21 binding. In addition to these results, we observed that the rP21 was able to inhibit cell proliferation and promoted a significant reduction in the number of 4n cells (G2/M phase). Moreover, we found that rP21 significantly increased F-actin levels and this protein was able to modulate expression of genes related to angiogenesis and actin cytoskeleton. However, rP21 showed no significant activity on the matrix components. In this sense, we conclude that the rP21-endothelial cells (ECs) interaction via CXCR4 promotes inhibition of vessel formation through a cascade of intracellular events, such as inhibition of ECs proliferation and modulation of the expression of molecules associated with angiogenic processes and actin cytoskeleton.
Resumo:
Chapter I - The obligate intracellular parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects humans and generates economic losses in farm animals. When prevention fails disease refers to the diagnosis and subsequent treatment if the individual is diagnosed as positive. Therefore, the development of new accurate diagnostic tools for detecting T. gondii infection is a need in particular to determine the environmental source of infection which can result in more appropriate public health policies against different routes of infection and prevent potential damage that toxoplasmosis can cause when animals are infected. Chapter II - The domestic chicken (Gallus gallus domesticus) are considered epidemiological sentinels, still representing a major source of recombinant strains when predated by cats, it is common to find them with multiple infections. We evaluate the diagnostic potential of six synthetic peptides (SAG2Y, MIC1, M2AP, GRA10, ROP2 and ROP7) predicted in silico from tachyzoites immunodominant markers of T. gondii in samples from naturally infected chickens, comparing synthetic peptides with antigen total soluble (STAg). In general, our results demonstrated that reactivity rates and positivity for these peptides are similar to the STAg, and the ROP7 peptide and the combination of peptides MIC1+ROP2 have significant sensitivity, confirming them as potential diagnostic tools for the diagnosis of toxoplasmosis in chickens. Chapter III - Sheep (Ovis aries) are commonly infected with Toxoplasma gondii due to his eating habits. Infection in pregnant sheep can have serious consequences such as embryonic death, fetal resorption, mummification, and neonatal death. One concern regarding the infection in these animals is that the meat can be a source of contamination to humans and other carnivores. Therefore perform accurate diagnosis in these animals is of fundamental importance. In the present study we evaluated the potential of new synthetic peptides as a diagnostic tool. Synthetic peptides (SAG2Y, SRS52A, MIC14, GRA4, GRA10 and GRA15) were predicted in silico from immunodominant proteins of T. gondii. We determine the levels of IgG antibodies using sera obtained from two farms in the city of Uberlândia. Analyzing the results together, the peptide combination GRA10+GRA15 (Accuracy = 0,82) showed better characteristics compared with the other mixtures. This preparation could be better analyzed with an antigenic mixture potential use in the diagnosis of toxoplasmosis in sheep and other species.
Resumo:
The classical treatment for congenital toxoplasmosis is based on combination of sulfadiazine and pyrimethamine plus folinic acid. Due to teratogenic effects and bone marrow suppression caused by pyrimethamine, the establishment of new therapeutic targets is indispensable to minimize the undesirable effects and improve the control of the infection. Previous studies demonstrated that enrofloxacin and toltrazuril were able to control the infection triggered by Neospora caninum and Toxoplasma gondii. Therefore, the aim of this present study was evaluate the efficacy of enrofloxacin and toltrazuril in the control of T. gondii proliferation in human trophoblast cells (BeWo lineage) and in human villous explants from third trimester. BeWo cells and villous were treated with several concentrations of enrofloxacin, toltrazuril, sulfadiazine, pyrimethamine or association (sulfadiazine + pyrimethamine) in other to verify their viability by MTT or LDH assay, respectively. Next, BeWo cells were infected with T. gondii RH (2F1 clone) or ME49 strain, whereas villous were infected only with RH strain (2F1 clone), after, both cells and villous were treated or not with the same antibiotics and analyzed to T. gondii intracellular proliferation by beta-galactosidase assay (for RH strain) or blue toluidine staining (for ME49 strain). ELISA was performed in the supernatant to evaluate the cytokine profile. Enrofloxacin and toltrazuril did not change strongly the viability in cells and villous. Furthermore, the drugs decreased the parasite intracellular proliferation regardless T. gondii strain in BeWo cells and villous explants when compared to untreated and infected conditions. In BeWo cells infected by RH, enrofloxacin induced high levels of IL-6 low levels of MIF, while both cytokines were upregulated by enrofloxacin and toltrazuril in BeWo cells infected by ME49 strain. Additionally, in villous explantes, enrofloxacin induced high MIF production. Thus, enrofloxacin and toltrazuril were able to control the parasitism in BeWo cells and villous explants, and probably it occurs by modulation of immune response in these cells or tissues and direct action on parasite, but future experiments are necessary to verify this hypothesis.
Resumo:
Neospora caninum is an obligate intracellular parasite classified in the phylum Apicomplexa, characterized by the presence of the apical complex composed by micronemes proteins, rhoptries and dense granules, used by parasite during the adhesion and invasion process of the host cell. This is the mean event in infection pathogenesis generated by N. caninum and other parasites from the phylum Apicomplexa, promoting influence in the parasite biology and the interface between the parasite and its host. Therefore, molecular tools have been developed in order to identify and characterize these possible virulence factors. Thus, the present study sought to establish a specific system of genetic manipulation of N. caninum, searching for the improvement of the genetics manipulation of this parasite. So, we developed genetically depleted N. caninum to Rop9 rhoptry using the pU6-Universal CRISPR-Cas9 plasmid of T. gondii modified by the insertion of Ku80. The Rop9 depleted parasite showed important during initial phase of invasion and replication of the parasite, however it was not characterized as a potential virulence fator for N. caninum. Furthermore, T. gondii proteins were expressed in N. caninum by the use of specific vectors for this parasite, showing an heterologous system for the study of Toxoplasma proteins, due to the fact that Gra15 or Gra24 of type II T. gondii and Rop16 of type I T. gondii were expressed in N. caninum tachyzoites in a stable way and keept its biological phenotype, as already presented the former parasite, that naturaly expresses these proteins. In addition, it was observed that N. caninum induced an inflammasome activation through NLRP3, ASC and Caspase-1. IL-1R/MyD88 demonstrated an indirect pathway in the control of parasite replication. Furthermore, it was observed that this activation is dependent of the potassium efflux and that different strains of N. caninum keep this activation profile. However, T. gondii strains block this activation, making necessary a prior signal in order to active the inflamosome pathway. Type I T. gondii Rop16 was identified as responsible for blocking this activation, in a dependent way to the STAT3 activation. Therefore, the development of molecular tools and their application in N. caninum may prove to be useful to identify and characterize virulent factors involved in the pathogenesis by these two protozoans.