10 resultados para Non-classical Logic

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

For first-order classical logic a new notion of admissible substitution is defined. This notion allows optimizing the procedure of the application of quantifier rules when logical inference search is made in sequent calculi. Our objective is to show that such a computer-oriented sequent technique may be created that does not require a preliminary skolemization of initial formulas and that is efficiently comparable with methods exploiting the skolemization. Some results on its soundness and completeness are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 44A35, 35L20, 35J05, 35J25

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MSC 2010: 44A35, 44A45, 44A40, 35K20, 35K05

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35J65, 35K60, 35B05, 35R05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J80.