14 resultados para Multi-objective evolutionary algorithm
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper an evolutionary algorithm is proposed for solving the problem of production scheduling in assembly system. The aim of the paper is to investigate a possibility of the application of evolutionary algorithms in the assembly system of a normally functioning enterprise producing household appliances to make the production graphic schedule.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
Силвия К. Баева, Цветана Хр. Недева - Важен аспект в системата на Министерството на регионалното развитие и благоустройство е работата по Оперативна програма “Регионално развитие” с приоритетна ос “Устойчиво и интегрирано градско развитие” по операция “Подобряване на физическата среда и превенция на риска”. По тази програма са включени 86 общини. Финансовият ресурс на тази операция е на стойност 238 589 939 евро, от които 202 801 448 евро са европейско финансиране [1]. Всяка от тези 86 общини трябва да реши задачата за възлагане на обществена поръчка на определена фирма по тази операция. Всъщност, тази задача е задача за провеждане на общински търг за избор на фирма-изпълнител. Оптималният избор на фирма-изпълнител е много важен. Задачата за провеждане на търг ще формулираме като задача на многокритериалното вземане на решения, като чрез подходящо изграждане на критерии и методи може да се трансформира до задача на еднокритериалната оптимизация.
Resumo:
In this paper the technique of shorter route determination of fire engine to the fire place on time minimization criterion with the use of evolutionary modeling is offered. The algorithm of its realization on the base of complete and optimized space of search of possible decisions is explored. The aspects of goal function forming and program realization of method having a special purpose are considered. Experimental verification is executed and the results of comparative analysis with the expert conclusions are considered.
Resumo:
This research was partially supported by the Serbian Ministry of Science and Ecology under project 144007. The authors are grateful to Ivana Ljubić for help in testing and to Vladimir Filipović for useful suggestions and comments.
Resumo:
P systems or Membrane Computing are a type of a distributed, massively parallel and non deterministic system based on biological membranes. They are inspired in the way cells process chemical compounds, energy and information. These systems perform a computation through transition between two consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of multisets present at any moment in the existing m regions of the system at that moment time. Transitions between two configurations are performed by using evolution rules which are in each region of the system in a non-deterministic maximally parallel manner. This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic system in several stages, each of them with concrete matters. In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of steps and, therefore, the end of the process will be reached in a shorter length of time.
Resumo:
In a paper the method of complex systems and processes clustering based use of genetic algorithm is offered. The aspects of its realization and shaping of fitness-function are considered. The solution of clustering task of Ukraine areas on socio-economic indexes is represented and comparative analysis with outcomes of classical methods is realized.
Resumo:
The aim of this work is distributed genetic algorithm implementation (so called island algorithm) to accelerate the optimum searching process in space of solutions. Distributed genetic algorithm has also smaller chances to fall in local optimum. This conception depends on mutual cooperation of the clients which realize separate working of genetic algorithms on local machines. As a tool for implementation of distributed genetic algorithm, created to produce net's applications Java technology was chosen. In Java technology, there is a technique of remote methods invocation - Java RMI. By means of invoking remote methods it can send objects between clients and server RMI.
Resumo:
* Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02
Resumo:
In this paper a genetic algorithm (GA) is applied on Maximum Betweennes Problem (MBP). The maximum of the objective function is obtained by finding a permutation which satisfies a maximal number of betweenness constraints. Every permutation considered is genetically coded with an integer representation. Standard operators are used in the GA. Instances in the experimental results are randomly generated. For smaller dimensions, optimal solutions of MBP are obtained by total enumeration. For those instances, the GA reached all optimal solutions except one. The GA also obtained results for larger instances of up to 50 elements and 1000 triples. The running time of execution and finding optimal results is quite short.
Resumo:
2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.
Resumo:
Здравко Д. Славов - В тази работа се разглеждат Паретовските решения в непрекъсната многокритериална оптимизация. Обсъжда се ролята на някои предположения, които влияят на характеристиките на Паретовските множества. Авторът се е опитал да премахне предположенията за вдлъбнатост на целевите функции и изпъкналост на допустимата област, които обикновено се използват в многокритериалната оптимизация. Резултатите са на базата на конструирането на ретракция от допустимата област върху Парето-оптималното множество.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
2000 Mathematics Subject Classification: 91E45.