1 resultado para Multi-objective evolutionary algorithm
em CaltechTHESIS
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (2)
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (20)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Aston University Research Archive (55)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Brock University, Canada (14)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (51)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (8)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (21)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (27)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (38)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (21)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (104)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (6)
- Scielo Uruguai (1)
- Universidad de Alicante (21)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (80)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (13)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (19)
- Universidade Metodista de São Paulo (3)
- Universita di Parma (2)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (38)
- Université de Montréal (3)
- Université de Montréal, Canada (21)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (27)
- University of Washington (3)
Resumo:
In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.