45 resultados para Generalized Differential Transform Method
Resumo:
Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.
Resumo:
Mathematics Subject Classification 2010: 42C40, 44A12.
Resumo:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99
Resumo:
MSC 2010: 34A08 (main), 34G20, 80A25
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.
Resumo:
ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
Атанаска Георгиева, Стела Глухчева, Снежана Христова - Изследвана е устойчивостта на нелинейни диференциални уравнения с “максимуми” по отношение на две мерки. Приложени са две различни мерки за началните условия и за решението. Използван е методът на Разумихин, а също така и методът на сравнението на обикновени скаларни диференциални уравнения. Приложението на получените резултати и достатъчни условия за устойчивост е илюстрирано с пример.
Resumo:
Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.
Resumo:
2010 Mathematics Subject Classification: Primary 35S05, 35J60; Secondary 35A20, 35B08, 35B40.
Resumo:
2002 Mathematics Subject Classification: 62P35, 62P30.
Resumo:
A class of priority systems with non-zero switching times, referred as generalized priority systems, is considered. Analytical results regarding the distribution of busy periods, queue lengths and various auxiliary characteristics are presented. These results can be viewed as generalizations of the Kendall functional equation and the Pollaczek-Khintchin transform equation, respectively. Numerical algorithms for systems’ busy periods and traffic coefficients are developed. ACM Computing Classification System (1998): 60K25.
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.
Resumo:
2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.
Resumo:
MSC 2010: 34A08, 34A37, 49N70