176 resultados para Nautical charts--South Atlantic States--Early works to 1800.
Resumo:
Without doubt, global climate change is directly linked to the anthropogenic release of greenhouse gases such as carbon dioxide (CO2) and methane (UN IPCC-Report 2007). Therefore, research efforts to comprehend the global carbon cycle have increased during the last years. In the context of the observed changes, it is of particular interest to decipher the role of the hydro-, bio- and atmospheres and how the different compartments of the earth system are affected by the increase of atmospheric CO2. Due to its huge carbon inventory, the marine carbon cycle represents the most important component in this respect. Numerous findings suggest that the Southern Ocean plays a key role in terms of oceanic CO2 uptake. However, an exact quantification of such fluxes of material is hard to achieve for large areas, not least on account of the inaccessibility of this remote region. In particular, there exist so far only few accurate data for benthic carbon fluxes. The latter can be derived from high resolution pore water oxygen profiles, as one possible method. However the ex situ flux determinations carried out on sediment cores, tend to suffer from temperature and pressure artefacts. Alternatively, oxygen microprofiles can be measured in situ, i.e. at the seafloor. Until now, no such data have been published for the Southern Ocean. During the Antarctic Expedition ANT-XXI/4, within the framework of this thesis, in situ and ex situ oxygen profiles were measured and used to derive benthic organic carbon fluxes. Having both types of measurements from the same locations, it was possible to establish a depth-related correction function which was applied subsequently to revise published and additional unpublished carbon fluxes to the seafloor. This resulted in a consistent data base of benthic carbon inputs covering many important sub-regions of the Southern Ocean including the Amundsen and Bellingshausen Seas (southern Pacific), Scotia and Weddell Seas (southern South Atlantic) as well as the Crozet Basin (southern Indian Ocean). Including additional locations on the Antarctic Shelf, there are now 134 new and revised measurement locations, covering almost 180° of the Southern Ocean, for which benthic organic carbon fluxes and sedimentary oxygen penetration depth values are available. Further, benthic carbon fluxes were empirically related to dominant diatom distributions in surface sediments as well as to long-term remotely sensed chlorophyll-a estimates. The comparison of these results with benthic carbon fluxes of the entire Atlantic Ocean reveals significantly higher export efficiencies for the Southern Ocean than have previously been assumed, especially for the area of the opal belt.
Resumo:
Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.
Resumo:
The aim of the present study is an evaluation of the applicability of biogenic barium as a proxy for productivity. For this purpose, 190 surface sediment samples from the South Atlantic Ocean were analysed for their barium and aluminium concentrations. Biogenic barium is estimated by subtracting the calculated terrigenous barium (obtained from the terrigenous Ba/Al ratio and the amount of Al in the sample) from the total Ba content in the sample. Based on the accumulation rates of biogenic barium, export production is estimated using three different algorithms proposed by [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181; Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021; Geomar. Report 38 (1995) 105]. Primary productivity was calculated from these different export productions and compared with measurements of recent primary productivity in the overlying surface waters. Only the primary productions calculated on the basis of the algorithm of [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181] yield productivity values comparable to those existing in ocean surface waters. This study further reveals that it is not sufficient to use a constant, generally applicable organic carbon/biogenic barium ratio, as is postulated by [Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021]. This ratio has to be assessed regionally. For the sediments of the Cape Basin in the eastern South Atlantic Ocean, a new algorithm is developed which gives plausible primary productivities for the overlying surface waters.
Resumo:
Cretaceous radiolarians were recovered from subantarctic Atlantic calcareous submarine deposits from two of the seven sites drilled during ODP Leg 114 in 1987. Fairly well-preserved radiolarian assemblages were found in Hole 698A samples from the Northeast Georgia Rise, whereas assemblages with fair to good preservation were observed from Hole 700B in the East Georgia Basin. The assemblage compositions from both sites are rather low in diversity and are characterized by the dominance of Protoamphipyndax, Dictyomitra, and Stichomitra species, but lack zonal markers recognized from the midlatitude to low-latitude region. Assignment of a Maestrichtian age is based on co-occurring calcareous microfossils. This report constitutes the second such occurrence from the Atlantic sector of the Antarctic Ocean subsequent to the analysis of ODP Leg 113 materials from the Weddell Sea.
Resumo:
A high-resolution (10-20 kyr) record of variations in CaCO3 content and dissolution was established for latest Cretaceous (last 0.7 Myr) deep-sea sediments from the South Atlantic Ocean (DSDP Site 516 from the Rio Grande Rise, and sites 525 and 527 from the Walvis Ridge). The degree of fragmentation of planktonic foraminifera (DFP) was used as a measure of calcite dissolution. High negative correlations between DFP and other independent measures of carbonate dissolution (percentage of sand fraction, absolute abundance of planktonic foraminifera, and planktonic/benthic foraminiferal ratio) validate its use as a sensitive index of calcite dissolution in upper Maastrichtian deep-sea sediments. Very high DFP and a significant negative correlation between DFP and CaCO 3 content suggest that Site 516 was located below the foraminiferal lysocline during the entire interval studied. Such a shallow position of the lysocline (paleodepth of Site 516 was 1.2 km) may be explained by "upwelling" of corrosive deep waters along the southern margin of the Rio Grande Rise. Sites 525 and 527 were located above the foraminiferal lysocline; however, three short periods of enhanced dissolution were recognised at Site 525 (paleodepth 1 km) and one interval of strong dissolution was identified at Site 527 (paleodepth 2.7 km). The lack of correspondence between the dissolution regimes at sites from the Walvis Ridge suggests limited deep-water communication across this physiographic barrier. Two of the dissolution maxima recognised at Site 525 correspond to carbonate maxima at Site 527. Variations in "upwelling" intensity along the Walvis Ridge, resulting in fluctuations in primary productivity in this area, may be the proximal cause of both carbonate cycles at Site 527 and dissolution cycles at Site 525. We suggest that development of the bottom Ekman layer between a hypothetical westward geostrophic current and the topographical height of the Rio Grande Rise-Walvis Ridge system may be a plausible hydrodynamical explanation for the proposed "'upwelling" along the southern margin of this topographical structure.
Resumo:
In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.
Resumo:
Als Alfred Merz mich aufforderte, die sedimentpetrographische Bearbeitung der "Meteor"-Expedition zu übernehmen, schwebte mir von vornherein als Ziel vor, die Sedimente nicht nur in größerer Zahl als bisher und im Zusammenhang mit den übrigen Wissenschaften vom Meer nach den bisherigen Untersuchungsmethoden zu beschreiben. Es war mir klar, daß neue Ergebnisse nur zu erwarten waren, wenn die Untersuchung der Sedimente und damit ihre Beschreibung auf Grund vertiefter und neuer Methoden unternommen wurde. Ich erhoffte von einer solchen verfeinerten Beschreibung auch ein klareres Bild der Abhängigkeit der Sedimente von ihrer Umwelt. Wir werden diese Abhängigkeit nur verstehen, wenn wir die allgemeinen Gesetzmäßigkeiten herausarbeiten können. Diese werden dann auch eine Anwendung auf andere Sedimente ermöglichen. Für solche Untersuchungen sind Tiefseesedimente günstig, weil wir bei ihnen relativ einfache Bildungsumstände haben, einfacher jedenfalls, als es in der Flachsee im allgemeinen der Fall ist, ungünstig aber, weil diese Umwelteinflüsse weniger bekannt und schwerer zu erforschen sind und die Auswahl der Untersuchungspunkte nicht nach sedimentpetrographischen Gesichtspunkten erfolgen konnte. Die ersten Jahre nach der Rückkehr von der Expedition wurden deshalb auf methodische Untersuchungen verwandt. Insbesondere kam es mir darauf an herauszubekommen, wie die feinsten Bestandteile der Sedimente zusammengesetzt sind. Diese "tonigen" Bestandteile bilden nicht nur den wesentlichen Anteil der Roten Tone und der Blauschlicke, wir finden sie auch, durch Kalk verdünnt, in den Globigerinenschlämmen wieder. Sie sind von der Wissenschaft bisher recht stiefmütterlich behandelt worden. Die Ausarbeitung der Methoden, die gerade auf diesem Gebiet Neuland betreten mußte, ließ sich nicht rasch erzwingen. Es kam hinzu, daß ich mir in Rostock erst meine Arbeitsmöglichkeiten schaffen mußte. Ich habe hier der Notgemeinschaft der Deutschen Wissenschaft und der Mecklenburgischen Regierung für ihre Unterstützung mit Apparaten und Personal wärmstens zu danken. Ferner mußte als Vorbedingung für die Deutung der Sedimente zunächst festgestellt werden, zu welchen geologischen Zeiten sie gebildet worden sind und wie groß ihre Bildungsgeschwindigkeit überhaupt ist. Diese Untersuchungen hat W. Schott mit Hilfe der Foraminiferenfaunen als Notgemeinschaftsstipendiat durchgeführt. Diese Vorarbeiten, insbesondere der Ausbau der Methoden, hatten den Nachteil, daß die Veröffentlichung der Ergebnisse nicht so rasch erfolgen konnte, wie ich es selbst gewünscht hätte. Bald nachdem die Darstellung der Methoden und die Foraminiferenuntersuchungen als erste Lieferung erschienen waren, stellte es sich als notwendig heraus, eine beträchtliche Kürzung des restlichen Teiles vorzunehmen. Das hat zur Folge, daß die erste Lieferung breiter dargestellt ist als die Ergebnisse. Als die Nachricht von der Kürzung und dem notwendigen raschen Abschluß des Werkes mir bekannt wurde (Januar 1935), mußte eine Reihe von Untersuchungen eingestellt werden, insbesondere mikroskopische Untersuchungen, die besonders viel Zeit und in der Darstellung viel Raum beanspruchen. Deshalb ist systematisch nur das Guinea-Becken durch V. Leinz und das Kapverden-Becken durch O. E. Radczewski untersucht worden.
Resumo:
We present the first combined dissolved hafnium (Hf) and neodymium (Nd) concentrations and isotope compositions of deep water masses from the Atlantic sector of the Southern Ocean. Eight full depth profiles were analyzed for Hf and twelve for Nd. Hafnium concentrations are generally depleted in the upper few hundred meters ranging between 0.2 pmol/kg and 0.4 pmol/kg and increase to relatively constant values of around 0.6 pmol/kg in the deeper water column. At the stations north of the Polar Front (PF), Nd concentrations increase linearly from about 10 pmol/kg at depths of ~ 200 m to up to 31 pmol/kg close to the bottom indicating particle scavenging and release. Within the Weddell Gyre (WG), however, Nd concentrations are essentially constant at 25 pmol/kg at depths greater than ~ 1000 m. The distributions of both elements show a positive correlation with dissolved silicon implying a close linkage to diatom biogeochemistry. Hafnium essentially shows invariant isotope compositions with values averaging at epsilon-Hf = +4.6, whereas Nd isotopes mark distinct differences between water masses, such as modified North Atlantic Deep Water (NADW, epsilon-Nd = -11 to -10) and Antarctic Bottom Water (AABW, epsilon-Nd = -8.6 to -9.6), but also waters locally advected via the Agulhas Current can be identified by their unradiogenic Nd isotope compositions. Mixing calculations suggest that a small fraction of Nd is removed by particle scavenging during mixing of water masses north of the PF. Nevertheless, the Nd isotope composition has apparently not been significantly affected by uptake and release of Nd from particles, as indicated by mixing calculations. A mixing envelope of an approximated North Pacific and a North Atlantic end-member shows that Nd isotope and concentration patterns in the Lower Circumpolar Deep Water (LCDW) can be fully explained by ~ 30:70 percentage contributions of these respective end-members.
Resumo:
High-resolution records of the natural radionuclide 230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the 230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of 230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.
Resumo:
Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).
Resumo:
A set of 114 samples from the sediment surface of the Atlantic, eastern Pacific and western Indian sectors of the Southern Ocean has been analyzed for 230Th and biogenic silica. Maps of opal content, Th-normalized mass flux, and Th-normalized biogenic opal flux into the sediment have been derived. Significant differences in sedimentation patterns between the regions can be detected. The mean bulk vertical fluxes integrated into the sediment in the open Southern Ocean are found in a narrow range from 2.9 g/m**2 yr (Eastern Weddell Gyre) to 15.8 g/m**2 yr (Indian sector), setting upper and lower limits to the vertically received fraction of open ocean sediments. The silica flux to sediments of the Atlantic sector of the Southern Ocean is found to be 4.2 ± 1.4 * 10**11 mol/yr, just one half of the last estimate. This adjustment represents 6% of the output term in the global marine silica budget.
Resumo:
Rates of sedimentation of pelagic sediments in the South Atlantic have been determined using the ionium/thorium methodology. Values of the order of several millimeters per thousand years for sediments were found in the deposits in the valleys of the mid-Atlantic ridge. The equatorial deposits showed higher rates of accumulation than the corresponding deposits at higher latitudes, probably reflecting the added influx of materials to the sea floor from tropical rivers through the equatorial current systems. The deposits in the ridge valleys showed marked changes in sedimentation rates at about 115,000 years ago, at which time the present rates changed from higher to lower values. The ridge sediments were composed primarily of continentally derived materials, and there were no indications of solid phases being derived from the weathering of the ridge itself or from volcanic activity. The equatorial samples have mineral assemblages which are distinctly different from those in deposits at higher latitudes and which probably are indicative of contributions of materials from tropical weathering processes.
Resumo:
Detailed geological, geophysical and lithological investigations of a section in the South Atlantic Ridge between 20°S and 30°S were made during Cruise 7 of R/V Professor Shtokman in 1982. The ridge is dissected by faults running across and along its strike. The bottom of the rift valley is at depth 3600-3800 m, and summits of seamounts are at depths 1800-2200 m. Aphyric and slightly porphyritic olivine-plagioclase basalts occur extensively in the rift zone, while highly porphyritic plagioclase basalts occur in the southern part of the area. All basalts are of the shallow depth central type representing plagioclase depth facies (15-30 km). Sediments (mainly foraminiferal-coccolithic oozes) occur in some depression traps.
Resumo:
We report relative paleointensity proxy records from four piston cores collected near the Agulhas Ridge and Meteor Rise (South Atlantic). The mean sedimentation rate of the cores varies from 24 cm/kyr to 11 cm/kyr. The two cores with mean sedimentation rates over 20 cm/kyr record positive remanence inclinations at 40-41 ka coeval with the Laschamp Event. Age models are based on oxygen isotope data from three of the cores, augmented by radiocarbon ages from nearby Core RC11-83, and by correlation of paleointensity records for the one core with no oxygen isotope data. The relative paleointensity proxy records are the first from the South Atlantic and from the high to mid-latitude southern hemisphere. Prominent paleointensity lows at ?40 ka and ?65 ka, as well as many other features, can be correlated to paleointensity records of comparable resolution from the northern hemisphere. The records are attributable, in large part, to the global-scale field, and therefore have potential for inter-hemispheric correlation at a resolution difficult to achieve with isotope data alone.
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.