614 resultados para URANIUM 238
Resumo:
A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling. After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas withoptimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.
Resumo:
A sediment core from the European Basin with alternation of biogenic calcareous oozes and terrigenous sediments is studied by several methods. Isotopic age is determined by 230Th-ex and 231Pa-ex and by the radiocarbon method. Surface water paleotemperatures are reconstructed from complexes of planktic foraminifera and oxygen isotope ratios in their shells, and the ratio of biogenic and terrigenous components are investigated. Stages 1-8 of the oxygen-isotope scale are identified. Fluctuations in paleooceanic conditions in the area of coring are discussed.
Resumo:
The Arctic sea-ice extent reached a record minimum in September 2012. Sea-ice decline increases the absorption of solar energy in the Arctic Ocean, affecting primary production and the plankton community. How this will modulate the sinking of particulate organic carbon (POC) from the ocean surface remains a key question. We use the 234Th/238U and 210Po/210Pb radionuclide pairs to estimate the magnitude of the POC export fluxes in the upper ocean of the central Arctic in summer 2012, covering time scales from weeks to months. The 234Th/238U proxy reveals that POC fluxes at the base of the euphotic zone were very low (2 ± 2 mmol C/m**2/d) in late summer. Relationships obtained between the 234Th export fluxes and the phytoplankton community suggest that prasinophytes contributed significantly to the downward fluxes, likely via incorporation into sea-ice algal aggregates and zooplankton-derived material. The magnitude of the depletion of 210Po in the upper water column over the entire study area indicates that particle export fluxes were higher before July/August than later in the season. 210Po fluxes and 210Po-derived POC fluxes correlated positively with sea-ice concentration, showing that particle sinking was greater under heavy sea-ice conditions than under partially ice-covered regions. Although the POC fluxes were low, a large fraction of primary production (>30%) was exported at the base of the euphotic zone in most of the study area during summer 2012, indicating a high export efficiency of the biological pump in the central Arctic. This article is protected by copyright. All rights reserved.
Resumo:
No clear scenario has yet been able to explain the full carbon drawdown that occurred during the Last Glacial Maximum (LGM); however, increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron (Fe) fertilisation has been proposed to have provided a key mechanism affecting the air-sea partitioning of carbon. We chronicle changes in marine EP based on four sediment cores in Subtropical Waters (STW) and SAZ around New Zealand since the LGM. For the first time in this region, we present 230-Thorium normalised fluxes of biogenic opal, carbonate (CaCO3), excess Barium (xsBa), and organic Carbon (Corg). In STW and SAZ, these flux variations show that EP did not change markedly since the LGM. The only exception was a site in the SAZ close to the STF, where we suggest the STF shifted over the core site, driving increased EP. To understand why EP was mostly low and constant we investigated dust deposition changes by measuring lithogenic fluxes at the four sites. These data are coherent with an increased dust deposition in the southwest Pacific during the LGM. Additionally, we infer an increased lithogenic material discharge from erosion and glacier melts during the deglaciation, limited to the Campbell Plateau. Therefore, we propose that even though increased glacial dust deposition may have relieved Fe limitation within the SAZ, the availability of silicic acid (Si(OH)4) limited any resultant increase in carbon export during the LGM. Consequently, we infer low Si(OH)4 concentrations in the SAZ that have not significantly changed since the LGM. This result suggests that both Si(OH)4 and Fe co-limit EP in the SAZ around New Zealand, which would be consistent with modern process studies.
Composition of melt inclusions and age of zircons of plagiogneisses from the Kola Superdeep Borehole
Resumo:
A comprehensive study of melt inclusions and SHRIMP dating of zircons from trondhjemite gneisses of the sequence VIII from the Kola Superdeep Borehole has revealed presence of old primary magmatic crystals with age up to 2887+/-15 Ma. This is not consistent with the previous view, according to which the oldest zircons from the Archean Complex in SG-3 are products of granulite metamorphism. Primary magmatic zircons of early generation (from 2887 to 2842 Ma) formed in deep-seated magma chambers during partial crystallization of CO2-saturated trondhjemite estimates on duration of generation of tonalite-trondhjemite-granite melts through partial melting of mafic rocks.
Resumo:
Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.
Resumo:
In this thesis it is shown that the cosmogenic radionuclide 10Be proved to be a sensitive stratigraphic tool for sediment cores from the Arctic Ocean with low or negligible content of biogenic carbonate, impeding a reliable 0180 stratigraphy. 10Be enables a stratigraphy of Arctic sediments comparable to the d18O stratigraphy Imbrie et al. [1984] in that high concentration of 10Be are related to interglacial stages in contrast to lower values during glacial periods. To use the °Be profile as dating tool it is necessary to investigate the sources and sinks as well as the pathways of this radiotracer. 10Be is produced in the upper atmosphere and transfered to the earth's surface by dry and wet deposition. Besides the atmospheric component there is an important input of 10Be with the rivers to the Arctic Ocean. I determined depositional 10Be fluxes in the shelf area of the Laptev Sea, which is characterized by a huge input of river water, the continental slope of the Laptev Sea, the central Arctic Ocean and the Norwegian- and Greenland Sea. The depositional 10Be fluxes of (20 ± 5) x 10**6 atoms/cm**2/a in the shelf area of the Laptev Sea are by two orders of magnitude higher than the recent atmospheric input (0.2 - 0.5) x 10**6 atoms/cm**2/a in Greenland. while the fluxes in the central Arctic Ocean are in the same range. Further I developed a model to reconstruct the pathways of radionuclides 230Th, 231Pa and 10Be in high northern latitudes. The modelling results were compared with the measured concentrations in the water column and the recent depositional fluxes. These results show that the recent pathways of these nuclides can be rebuild by this model. Thus we can apply this model to earlier oxygen isotope stages to find out which predominate conditions lead to the determined depositional fluxes.
Resumo:
Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite-chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, d7Li L-SVEC = + 3.3 to + 8.6 per mil). Carbon isotopic compositions range to high d13C PDB values (+ 8.7 per mil), indicating that methanogenesis took place at depth. The Sr-Li-C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T > 350-400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8-12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100-150 °C/km, characteristic of young lithosphere undergoing rapid uplift.
Resumo:
Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.
Resumo:
ESR-spectra of foraminifera in arctic sediment cores display the [CO2]- -signal (g=2.0006). Research on the thermal behaviour of the [CO2]- -signal shows that both natural and artificial irradiation generates a precursor and a thermal unstable component of the [CO2]- -signal. The precursor can be transfered to the stable radical, and unstable radicals can be removed by heating. The signal-change by heating depends on the irradiation dose. Because of the varying response on thermal treatment, the dose-response curves show systematic differences depending on the applied procedure (single- or multi-aliquot method with or without heating). A model for the description of the [CO2]- -signal-change is presented. The combination of two exponential saturation functions seems to be an adequate analytical description of the dose-response curve of the [CO2]- -signal in foraminifera. Due to the limited thermal stability this signal can be used for dating foraminifera with ages up to about 190 ka.
Resumo:
Methane hydrate is an ice-like substance that is stable at high-pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we can corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least three thousand years and that seasonal fluctuations of 1-2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.