169 resultados para amino-protected glutamic acid
Resumo:
Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.
Resumo:
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km-300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Resumo:
The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).
Resumo:
During the 'Polarstern' expedition ARK-IV/2 in June 1987, water samples from 8 stations were taken to study biomass and substrate utilization of cold adapted bacteria. Bacterial biomasses determined from acridine orange direct counts (AODC) were between 0.4 and 31.4 µ/g C/l, and ATP concentrations amounted from <0.1 to 40 ng/l. Colony counts on seawater agar reached only 0.1% of AODC, but with the MPN-method 1 to 10% of AODC were recorded. With 14C-glutamic acid or 14C-glucose as tracer substrate in oligotrophic broth containing 0.5 mg trypticase and 0.05 mg yeast extract per liter of seawater, obligately oligotrophic bacteria could be detected in one water sample. Although incubation was at 2 °C, only psychrotrophic bacteria showing growth temperatures between 1 and 30 °C were obtained. Organic substrate utilizations by 106 isolates were tested at 4 and 20 °C. Most carbohydrates, organic acids, alcohols, and alanine were assimilated at both temperatures, but arginine, aspartate and ornithine were utilized only at 20 °C by almost all strains.
Resumo:
From enrichment cultures in dialysis chambers held in natural seawater tanks, 104 strains were isolated and kept in culture. All strains proved to be Gram-negative and psychrotrophic, having optimum growth temperatures of between 20 and 24 °C. Maximal growth temperatures were 30 to 37 °C, or even higher. With 55 isolates, substrate utilizations in Biolog MicroPlates were determined, and the obtained metabolic fingerprints used for clustering. Five groups could be distinguished at the 80% similarity level. Fifteen strains belonged to cluster 1, seven strains to cluster 2, and each of the clusters 3 and 4 contained nine strains. Cluster 5 can be divided into subcluster 5a and 5b, with 6 strains showing a few substrates metabolized, and 9 strains without any reactions, or weak reactions for one or two substrates, respectively. Each cluster could be characterized by specific metabolic fingerprints. Strains from cluster 1 metabolized N-acetyl-D-glucosamine, alpha-hydroxybutyric acid and gamma-hydroxybutyric acid, strains from cluster 2 citric acid, formic acid, thymidine and putrescine, strains from cluster 3 glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-threonine and inosine, whereas strains from cluster 4 metabolized alpha-cyclodextrin and N-acetyl-D-galactosamine, typically. Methylamine was not utilized by the isolates, but strains from cluster 1, 2 and 3 could grow on basal seawater agar. Morphological characteristics and photomicrographs of the oligotrophic strains are presented. Due to their typical morphologies and ampicillin resistence, the nine strains from cluster 3 can be regarded as new species of the genus Planctomyces. These bacteria have not been cultivated before.
Resumo:
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2. However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2, bicarbonate, carbonate and protons) on the physiological responses to elevated CO2. Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2. Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level