16 resultados para Self-Adjoint Derivation Ranges

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the simple harmonic oscillator in a 1-d box, and the 2-d isotropic harmonic oscillator problem in a circular cavity with perfectly reflecting boundary conditions. The energy spectrum has been calculated as a function of the self-adjoint extension parameter. For sufficiently negative values of the self-adjoint extension parameter, there are bound states localized at the wall of the box or the cavity that resonate with the standard bound states of the simple harmonic oscillator or the isotropic oscillator. A free particle in a circular cavity has been studied for the sake of comparison. This work represents an application of the recent generalization of the Heisenberg uncertainty relation related to the theory of self-adjoint extensions in a finite volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge–Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson–Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R=(l+1)(l+2)a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ=∞ or γ = 2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze perturbations of the harmonic oscillator type operators in a Hilbert space H, i.e. of the self-adjoint operator with simple positive eigenvalues μ k satisfying μ k+1 − μ k ≥ Δ > 0. Perturbations are considered in the sense of quadratic forms. Under a local subordination assumption, the eigenvalues of the perturbed operator become eventually simple and the root system contains a Riesz basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac Hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the generalized Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in the foreseeable future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many plant species have been introduced from their native ranges to new continents, but few have become naturalized or, ultimately, invasive. It has been predicted that species that do not require the presence of compatible mates and the services of pollinators for reproduction will be favored in establishment after long-distance dispersal. We tested whether this hypothesis, generally referred to as Baker's law, holds for South African species of Iridaceae ( iris family) that have been introduced in other regions for horticultural purposes. Fruit and seed production of flowers from which pollinators had been experimentally excluded was assessed for 10 pairs of species from nine different genera or subgenera. Each species pair comprised one naturalized and one nonnaturalized species, all of which are used in international horticulture. On average, species of Iridaceae that have become naturalized outside their native ranges showed a higher capacity for autonomous fruit and seed production than congeneric species that have not become naturalized. This was especially true for the naturalized species that are considered to be invasive weeds. These results provide strong evidence for the role of autonomous seed production in increasing potential invasiveness in plants.