Non-self-adjoint graphs
Data(s) |
04/04/2015
|
---|---|
Resumo |
On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/74319/1/1%20HuKrSi.pdf Hussein, A.; Krejčiřík, D.; Siegl, Petr (2015). Non-self-adjoint graphs. Transactions of the American Mathematical Society, 367(4), pp. 2921-2957. American Mathematical Society 10.1090/S0002-9947-2014-06432-5 <http://dx.doi.org/10.1090/S0002-9947-2014-06432-5> doi:10.7892/boris.74319 info:doi:10.1090/S0002-9947-2014-06432-5 urn:issn:0002-9947 |
Idioma(s) |
eng |
Publicador |
American Mathematical Society |
Relação |
http://boris.unibe.ch/74319/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Hussein, A.; Krejčiřík, D.; Siegl, Petr (2015). Non-self-adjoint graphs. Transactions of the American Mathematical Society, 367(4), pp. 2921-2957. American Mathematical Society 10.1090/S0002-9947-2014-06432-5 <http://dx.doi.org/10.1090/S0002-9947-2014-06432-5> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |