Non-self-adjoint graphs


Autoria(s): Hussein, A.; Krejčiřík, D.; Siegl, Petr
Data(s)

04/04/2015

Resumo

On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.

Formato

application/pdf

Identificador

http://boris.unibe.ch/74319/1/1%20HuKrSi.pdf

Hussein, A.; Krejčiřík, D.; Siegl, Petr (2015). Non-self-adjoint graphs. Transactions of the American Mathematical Society, 367(4), pp. 2921-2957. American Mathematical Society 10.1090/S0002-9947-2014-06432-5 <http://dx.doi.org/10.1090/S0002-9947-2014-06432-5>

doi:10.7892/boris.74319

info:doi:10.1090/S0002-9947-2014-06432-5

urn:issn:0002-9947

Idioma(s)

eng

Publicador

American Mathematical Society

Relação

http://boris.unibe.ch/74319/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Hussein, A.; Krejčiřík, D.; Siegl, Petr (2015). Non-self-adjoint graphs. Transactions of the American Mathematical Society, 367(4), pp. 2921-2957. American Mathematical Society 10.1090/S0002-9947-2014-06432-5 <http://dx.doi.org/10.1090/S0002-9947-2014-06432-5>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed