24 resultados para Poincaré duality

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a class of descriptors for regular languages arising from an application of the Stone duality between finite Boolean algebras and finite sets. These descriptors, called classical fortresses, are object specified in classical propositional logic and capable to accept exactly regular languages. To prove this, we show that the languages accepted by classical fortresses and deterministic finite automata coincide. Classical fortresses, besides being propositional descriptors for regular languages, also turn out to be an efficient tool for providing alternative and intuitive proofs for the closure properties of regular languages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The important application of semi-static hedging in financial markets naturally leads to the notion of conditionally quasi self-dual processes which is, for continuous semimartingales, related to conditional symmetry properties of both their ordinary as well as their stochastic logarithms. We provide a structure result for continuous conditionally quasi self-dual processes. Our main result is to give a characterization of continuous Ocone martingales via a strong version of self-duality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first-order corrected dynamics of fluid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order in the absence of external forces. Assuming linear response theory, we characterize the corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We subsequently find large classes of examples in gravity of this effective theory, by constructing stationary strained charged black brane solutions to first order in a derivative expansion. Using solution generating techniques and bent neutral black branes as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D-branes of type II string theory. By subsequently measuring the bending moment and the electric dipole moment which these geometries acquire due to the strain, we uncover that their form is captured by classical electroelasticity theory. In particular, we find that the Young modulus and the piezoelectric moduli of our strained charged black brane solutions are parameterized by a total of 4 response coefficients, both for the isotropic as well as anisotropic cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a flux formulation of Double Field Theory in which fluxes are dynamical and field-dependent. Gauge consistency imposes a set of quadratic constraints on the dynamical fluxes, which can be solved by truly double configurations. The constraints are related to generalized Bianchi Identities for (non-)geometric fluxes in the double space, sourced by (exotic) branes. Following previous constructions, we then obtain generalized connections, torsion and curvatures compatible with the consistency conditions. The strong constraint-violating terms needed to make contact with gauged supergravities containing duality orbits of non-geometric fluxes, systematically arise in this formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While electromagnetic duality is a symmetry of many supergravity theories, this is not the case for the N = 8 gauged theory. It was recently shown that this rotation leads to a one-parameter family of SO(8) supergravities. It is an open question what the period of this parameter is. This issue is investigated in the SO(4) invariant sectors of the theory. We classify such critical points and find a novel branch of non-supersymmetric and unstable solutions, whose embedding is related via triality to the two known ones. Secondly, we show that the three branches of solutions lead to a π/4 periodicity of the vacuum structure. The general interrelations between triality and periodicity are discussed. Finally, we comment on the connection to other gauge groups as well as the possibility to achieve (non-)perturbative stability around AdS/Mkw/dS transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Car manufacturers increasingly offer delivery programs for the factory pick-up of new cars. Such a program consists of a broad range of event-marketing activities. In this paper we investigate the problem of scheduling the delivery program activities of one day such that the sum of the customers’ waiting times is minimized. We show how to model this problem as a resource-constrained project scheduling problem with nonregular objective function, and we present a relaxation-based beam-search solution heuristic. The relaxations are solved by exploiting a duality relationship between temporal scheduling and min-cost network flow problems. This approach has been developed in cooperation with a German automaker. The performance of the heuristic has been evaluated based on practical and randomly generated test instances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The important application of semistatic hedging in financial markets naturally leads to the notion of quasi--self-dual processes. The focus of our study is to give new characterizations of quasi--self-duality. We analyze quasi--self-dual Lévy driven markets which do not admit arbitrage opportunities and derive a set of equivalent conditions for the stochastic logarithm of quasi--self-dual martingale models. Since for nonvanishing order parameter two martingale properties have to be satisfied simultaneously, there is a nontrivial relation between the order and shift parameter representing carrying costs in financial applications. This leads to an equation containing an integral term which has to be inverted in applications. We first discuss several important properties of this equation and, for some well-known Lévy-driven models, we derive a family of closed-form inversion formulae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple combinatorial model for quasipositive surfaces and positive braids, based on embedded bipartite graphs. As a first application, we extend the well-known duality on standard diagrams of torus links to twisted torus links. We then introduce a combinatorial notion of adjacency for bipartite graph links and discuss its potential relation with the adjacency problem for plane curve singularities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce Tome II introduit la cohomologie, qui est une théorie duale de l'homologie, et examine les liens avec cette dernière ainsi que les divers produits construits sur les modules d'homologie et de cohomologie. Nous étudions en détail les variétés topologiques avec ou sans bord, définissons sur celles-ci au moyen de l'homologie une notion d'orientation et la comparons avec les définitions classiques d'orientation pour les variétés différentiables ou triangulables. Nous exposons les théorèmes de dualité de Poincaré, Alexander et Lefschetz et en déduisons les propriétés des formes d'intersection et de la signature des variétés. Le dernier chapitre du livre présente les résultats fondamentaux concernant la différentiabilité et la triangulabilité des variétés, obtenus depuis les années soixante du siècle dernier, tant en grandes dimensions qu'en dimension quatre. Nous discutons également la conjecture de Poincaré classique et ses généralisations. Bien que des démonstrations complètes de ces résultats soient hors de portée d'un ouvrage tel que le nôtre, nous nous sommes attachés à rendre leurs énoncés compréhensibles. Cette vue d'ensemble, et les références à la littérature qui l'accompagnent, fournissent une introduction aux développements récents dans ce riche domaine de la topologie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce livre, en deux tomes, est une introduction à la topologie algébrique et plus particulièrement à la théorie de l'homologie. Celle-ci associe à chaque espace topologique un module dont les propriétés algébriques reflètent celles de l'espace considéré. Nous l'appliquons principalement à l'étude des variétés, qui interviennent de manière fondamentale tant en mathématiques qu'en physique. Nous discutons de manière détaillée les divers concepts de dimension et d'orientation des variétés et établissons les résultats fondamentaux que sont les dualités de Poincaré et de Lefschetz.