Bipartite graphs and quasipositive surfaces
| Data(s) |
01/06/2014
|
|---|---|
| Resumo |
We present a simple combinatorial model for quasipositive surfaces and positive braids, based on embedded bipartite graphs. As a first application, we extend the well-known duality on standard diagrams of torus links to twisted torus links. We then introduce a combinatorial notion of adjacency for bipartite graph links and discuss its potential relation with the adjacency problem for plane curve singularities. |
| Formato |
application/pdf |
| Identificador |
http://boris.unibe.ch/63577/1/655.full.pdf Baader, Sebastian (2014). Bipartite graphs and quasipositive surfaces. Quarterly Journal of Mathematics, 65(2), pp. 655-664. Oxford University Press 10.1093/qmath/hat014 <http://dx.doi.org/10.1093/qmath/hat014> doi:10.7892/boris.63577 info:doi:10.1093/qmath/hat014 urn:issn:0033-5606 |
| Idioma(s) |
eng |
| Publicador |
Oxford University Press |
| Relação |
http://boris.unibe.ch/63577/ |
| Direitos |
info:eu-repo/semantics/restrictedAccess |
| Fonte |
Baader, Sebastian (2014). Bipartite graphs and quasipositive surfaces. Quarterly Journal of Mathematics, 65(2), pp. 655-664. Oxford University Press 10.1093/qmath/hat014 <http://dx.doi.org/10.1093/qmath/hat014> |
| Palavras-Chave | #510 Mathematics |
| Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |