Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets


Autoria(s): Mackay, John M.; Tyson, Jeremy T.; Wildrick, Kevin Michael
Data(s)

01/06/2013

Resumo

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/41984/1/1201.3548v2.pdf

http://boris.unibe.ch/41984/7/__ubnetapp02_user%24_brinksma_Downloads_modulus%20poincare.pdf

Mackay, John M.; Tyson, Jeremy T.; Wildrick, Kevin Michael (2013). Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets. Geometric and functional analysis, 23(3), pp. 985-1034. Birkhäuser 10.1007/s00039-013-0227-6 <http://dx.doi.org/10.1007/s00039-013-0227-6>

doi:10.7892/boris.41984

info:doi:10.1007/s00039-013-0227-6

urn:issn:1016-443X

Idioma(s)

eng

Publicador

Birkhäuser

Relação

http://boris.unibe.ch/41984/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Mackay, John M.; Tyson, Jeremy T.; Wildrick, Kevin Michael (2013). Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets. Geometric and functional analysis, 23(3), pp. 985-1034. Birkhäuser 10.1007/s00039-013-0227-6 <http://dx.doi.org/10.1007/s00039-013-0227-6>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed