Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets
Data(s) |
01/06/2013
|
---|---|
Resumo |
A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/41984/1/1201.3548v2.pdf http://boris.unibe.ch/41984/7/__ubnetapp02_user%24_brinksma_Downloads_modulus%20poincare.pdf Mackay, John M.; Tyson, Jeremy T.; Wildrick, Kevin Michael (2013). Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets. Geometric and functional analysis, 23(3), pp. 985-1034. Birkhäuser 10.1007/s00039-013-0227-6 <http://dx.doi.org/10.1007/s00039-013-0227-6> doi:10.7892/boris.41984 info:doi:10.1007/s00039-013-0227-6 urn:issn:1016-443X |
Idioma(s) |
eng |
Publicador |
Birkhäuser |
Relação |
http://boris.unibe.ch/41984/ |
Direitos |
info:eu-repo/semantics/openAccess info:eu-repo/semantics/restrictedAccess |
Fonte |
Mackay, John M.; Tyson, Jeremy T.; Wildrick, Kevin Michael (2013). Modulus and Poincaré Inequalities on Non-Self-Similar Sierpiński Carpets. Geometric and functional analysis, 23(3), pp. 985-1034. Birkhäuser 10.1007/s00039-013-0227-6 <http://dx.doi.org/10.1007/s00039-013-0227-6> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |