4 resultados para weak solutions
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Inhomogenitäten der Leitfähigkeit in der elektrischen Impedanztomographie auf unbeschränkten Gebieten - speziell der Halbebene bzw. dem Halbraum - untersucht. Als Lösungsräume für das direkte Problem, d.h. die Bestimmung des elektrischen Potentials zu vorgegebener Leitfähigkeit und zu vorgegebenem Randstrom, führen wir gewichtete Sobolev-Räume ein. In diesen wird die Existenz von schwachen Lösungen des direkten Problems gezeigt und die Gültigkeit einer Integraldarstellung für die Lösung der Laplace-Gleichung, die man bei homogener Leitfähigkeit erhält, bewiesen. Mittels der Faktorisierungsmethode geben wir eine explizite Charakterisierung von Einschlüssen an, die gegenüber dem Hintergrund eine sprunghaft erhöhte oder erniedrigte Leitfähigkeit haben. Damit ist zugleich für diese Klasse von Leitfähigkeiten die eindeutige Rekonstruierbarkeit der Einschlüsse bei Kenntnis der lokalen Neumann-Dirichlet-Abbildung gezeigt. Die mittels der Faktorisierungsmethode erhaltene Charakterisierung der Einschlüsse haben wir in ein numerisches Verfahren umgesetzt und sowohl im zwei- als auch im dreidimensionalen Fall mit simulierten, teilweise gestörten Daten getestet. Im Gegensatz zu anderen bekannten Rekonstruktionsverfahren benötigt das hier vorgestellte keine Vorabinformation über Anzahl und Form der Einschlüsse und hat als nicht-iteratives Verfahren einen vergleichsweise geringen Rechenaufwand.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.
Resumo:
Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.