27 resultados para weak solutions
em CaltechTHESIS
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
A method for determining by inspection the stability or instability of any solution u(t,x) = ɸ(x-ct) of any smooth equation of the form u_t = f(u_(xx),u_x,u where ∂/∂a f(a,b,c) > 0 for all arguments a,b,c, is developed. The connection between the mean wavespeed of solutions u(t,x) and their initial conditions u(0,x) is also explored. The mean wavespeed results and some of the stability results are then extended to include equations which contain integrals and also to include some special systems of equations. The results are applied to several physical examples.
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.
Resumo:
Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.
The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.
When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.
For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.
Resumo:
This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.
One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.
Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.
The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.
Resumo:
Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.
Resumo:
One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.
Resumo:
This work concerns itself with the possibility of solutions, both cooperative and market based, to pollution abatement problems. In particular, we are interested in pollutant emissions in Southern California and possible solutions to the abatement problems enumerated in the 1990 Clean Air Act. A tradable pollution permit program has been implemented to reduce emissions, creating property rights associated with various pollutants.
Before we discuss the performance of market-based solutions to LA's pollution woes, we consider the existence of cooperative solutions. In Chapter 2, we examine pollutant emissions as a trans boundary public bad. We show that for a class of environments in which pollution moves in a bi-directional, acyclic manner, there exists a sustainable coalition structure and associated levels of emissions. We do so via a new core concept, one more appropriate to modeling cooperative emissions agreements (and potential defection from them) than the standard definitions.
However, this leaves the question of implementing pollution abatement programs unanswered. While the existence of a cost-effective permit market equilibrium has long been understood, the implementation of such programs has been difficult. The design of Los Angeles' REgional CLean Air Incentives Market (RECLAIM) alleviated some of the implementation problems, and in part exacerbated them. For example, it created two overlapping cycles of permits and two zones of permits for different geographic regions. While these design features create a market that allows some measure of regulatory control, they establish a very difficult trading environment with the potential for inefficiency arising from the transactions costs enumerated above and the illiquidity induced by the myriad assets and relatively few participants in this market.
It was with these concerns in mind that the ACE market (Automated Credit Exchange) was designed. The ACE market utilizes an iterated combined-value call market (CV Market). Before discussing the performance of the RECLAIM program in general and the ACE mechanism in particular, we test experimentally whether a portfolio trading mechanism can overcome market illiquidity. Chapter 3 experimentally demonstrates the ability of a portfolio trading mechanism to overcome portfolio rebalancing problems, thereby inducing sufficient liquidity for markets to fully equilibrate.
With experimental evidence in hand, we consider the CV Market's performance in the real world. We find that as the allocation of permits reduces to the level of historical emissions, prices are increasing. As of April of this year, prices are roughly equal to the cost of the Best Available Control Technology (BACT). This took longer than expected, due both to tendencies to mis-report emissions under the old regime, and abatement technology advances encouraged by the program. Vve also find that the ACE market provides liquidity where needed to encourage long-term planning on behalf of polluting facilities.
Resumo:
Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.
The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.
The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)
The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).
Resumo:
An electrostatic mechanism for the flocculation of charged particles by polyelectrolytes of opposite charge is proposed. The difference between this and previous electrostatic coagulation mechanisms is the formation of charged polyion patches on the oppositely charged surfaces. The size of a patch is primarily a function of polymer molecular weight and the total patch area is a function of the amount of polymer adsorbed. The theoretical predictions of the model agree with the experimental dependence of the polymer dose required for flocculation on polymer molecular weight and solution ionic strength.
A theoretical analysis based on the Derjaguin-Landau, Verwey- Overbeek electrical double layer theory and statistical mechanical treatments of adsorbed polymer configurations indicates that flocculation of charged particles in aqueous solutions by polyelectrolytes of opposite charge does not occur by the commonly accepted polymerbridge mechanism.
A series of 1, 2-dimethyl-5 -vinylpyridinium bromide polymers with a molecular weight range of 6x10^3 to 5x10^6 was synthesized and used to flocculate dilute polystyrene latex and silica suspensions in solutions of various ionic strengths. It was found that with high molecular weight polymers and/or high ionic strengths the polymer dose required for flocculation is independent of molecular weight. With low molecular weights and/or low ionic strengths, the flocculation dose decreases with increasing molecular weight.
Resumo:
The differential energy spectra of cosmic-ray protons and He nuclei have been measured at energies up to 315 MeV/nucleon using balloon- and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere.
The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. The transport equation governing this process includes as parameters the solar-wind velocity, V, and a diffusion coefficient, K(r,R), which is assumed to be a scalar function of heliocentric radius, r, and magnetic rigidity, R. The interstellar spectra, jD, enter as boundary conditions on the solutions to the transport equation. Solutions to the transport equation have been calculated for a broad range of assumed values for K(r,R) and jD and have been compared with the measured spectra.
It is found that the solutions may be characterized in terms of a dimensionless parameter, ψ(r,R) = ∞∫r V dr'/(K(r',R). The amount of modulation is roughly proportional to ψ. At high energies or far from the Sun, where the modulation is weak, the solution is determined primarily by the value of ψ (and the interstellar spectrum) and is not sensitive to the radial dependence of the diffusion coefficient. At low energies and for small r, where the effects of adiabatic deceleration are found to be large, the spectra are largely determined by the radial dependence of the diffusion coefficient and are not very sensitive to the magnitude of ψ or to the interstellar spectra. This lack of sensitivity to jD implies that the shape of the spectra at Earth cannot be used to determine the interstellar intensities at low energies.
Values of ψ determined from electron data were used to calculate the spectra of protons and He nuclei near Earth. Interstellar spectra of the form jD α (W - 0.25m)-2.65 for both protons and He nuclei were found to yield the best fits to the measured spectra for these values of ψ, where W is the total energy and m is the rest energy. A simple model for the diffusion coefficient was used in which the radial and rigidity dependence are separable and K is independent of radius inside a modulation region which has a boundary at a distance D. Good agreement was found between the measured and calculated spectra for the years 1965 through 1968, using typical boundary distances of 2.7 and 6.1 A.U. The proton spectra observed in 1969 and 1970 were flatter than in previous years. This flattening could be explained in part by an increase in D, but also seemed to require that a noticeable fraction of the observed protons at energies as high at 50 to 100 MeV be attributed to quiet-time solar emission. The turnup in the spectra at low energies observed in all years was also attributed to solar emission. The diffusion coefficient used to fit the 1965 spectra is in reasonable agreement with that determined from the power spectra of the interplanetary magnetic field (Jokipii and Coleman, 1968). We find a factor of roughly 3 increase in ψ from 1965 to 1970, corresponding to the roughly order of magnitude decrease in the proton intensity at 250 MeV. The change in ψ might be attributed to a decrease in the diffusion coefficient, or, if the diffusion coefficient is essentially unchanged over that period (Mathews et al., 1971), might be attributed to an increase in the boundary distance, D.