3 resultados para slowly varying envelope approximation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.
Resumo:
In technical design processes in the automotive industry, digital prototypes rapidly gain importance, because they allow for a detection of design errors in early development stages. The technical design process includes the computation of swept volumes for maintainability analysis and clearance checks. The swept volume is very useful, for example, to identify problem areas where a safety distance might not be kept. With the explicit construction of the swept volume an engineer gets evidence on how the shape of components that come too close have to be modified.rnIn this thesis a concept for the approximation of the outer boundary of a swept volume is developed. For safety reasons, it is essential that the approximation is conservative, i.e., that the swept volume is completely enclosed by the approximation. On the other hand, one wishes to approximate the swept volume as precisely as possible. In this work, we will show, that the one-sided Hausdorff distance is the adequate measure for the error of the approximation, when the intended usage is clearance checks, continuous collision detection and maintainability analysis in CAD. We present two implementations that apply the concept and generate a manifold triangle mesh that approximates the outer boundary of a swept volume. Both algorithms are two-phased: a sweeping phase which generates a conservative voxelization of the swept volume, and the actual mesh generation which is based on restricted Delaunay refinement. This approach ensures a high precision of the approximation while respecting conservativeness.rnThe benchmarks for our test are amongst others real world scenarios that come from the automotive industry.rnFurther, we introduce a method to relate parts of an already computed swept volume boundary to those triangles of the generator, that come closest during the sweep. We use this to verify as well as to colorize meshes resulting from our implementations.
Resumo:
Eine der offenen Fragen der aktuellen Physik ist das Verständnis von Systemen im Nichtgleichgewicht. Im Gegensatz zu der Gleichgewichtsphysik ist in diesem Bereich aktuell kein Formalismus bekannt der ein systematisches Beschreiben der unterschiedlichen Systeme ermöglicht. Um das Verständnis über diese Systeme zu vergrößern werden in dieser Arbeit zwei unterschiedliche Systeme studiert, die unter einem externen Feld ein starkes nichtlineares Verhalten zeigen. Hierbei handelt es sich zum einen um das Verhalten von Teilchen unter dem Einfluss einer extern angelegten Kraft und zum anderen um das Verhalten eines Systems in der Nähe des kritischen Punktes unter Scherung. Das Modellsystem in dem ersten Teil der Arbeit ist eine binäre Yukawa Mischung, die bei tiefen Temperaturen einen Glassübergang zeigt. Dies führt zu einer stark ansteigenden Relaxationszeit des Systems, so dass man auch bei kleinen Kräften relativ schnell ein nichtlineares Verhalten beobachtet. In Abhängigkeit der angelegten konstanten Kraft können in dieser Arbeit drei Regime, mit stark unterschiedlichem Teilchenverhalten, identifiziert werden. In dem zweiten Teil der Arbeit wird das Ising-Modell unter Scherung betrachtet. In der Nähe des kritischen Punkts kommt es in diesem Modell zu einer Beeinflussung der Fluktuationen in dem System durch das angelegte Scherfeld. Dies hat zur Folge, dass das System stark anisotrop wird und man zwei unterschiedliche Korrelationslängen vorfindet, die mit unterschiedlichen Exponenten divergieren. Infolgedessen lässt sich der normale isotrope Formalismus des "finite-size scaling" nicht mehr auf dieses System anwenden. In dieser Arbeit wird gezeigt, wie dieser auf den anisotropen Fall zu verallgemeinern ist und wie damit die kritischen Punkte, sowie die dazu gehörenden kritischen Exponenten berechnet werden können.