9 resultados para sliding mode control theory

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contains several applications of the mode-coupling theory (MCT) and is separated into three parts. In the first part we investigate the liquid-glass transition of hard spheres for dimensions d→∞ analytically and numerically up to d=800 in the framework of MCT. We find that the critical packing fraction ϕc(d) scales as d²2^(-d), which is larger than the Kauzmann packing fraction ϕK(d) found by a small-cage expansion by Parisi and Zamponi [J. Stat. Mech.: Theory Exp. 2006, P03017 (2006)]. The scaling of the critical packing fraction is different from the relation ϕc(d)∼d2^(-d) found earlier by Kirkpatrick and Wolynes [Phys. Rev. A 35, 3072 (1987)]. This is due to the fact that the k dependence of the critical collective and self nonergodicity parameters fc(k;d) and fcs(k;d) was assumed to be Gaussian in the previous theories. We show that in MCT this is not the case. Instead fc(k;d) and fcs(k;d), which become identical in the limit d→∞, converge to a non-Gaussian master function on the scale k∼d^(3/2). We find that the numerically determined value for the exponent parameter λ and therefore also the critical exponents a and b depend on the dimension d, even at the largest evaluated dimension d=800. In the second part we compare the results of a molecular-dynamics simulation of liquid Lennard-Jones argon far away from the glass transition [D. Levesque, L. Verlet, and J. Kurkijärvi, Phys. Rev. A 7, 1690 (1973)] with MCT. We show that the agreement between theory and computer simulation can be improved by taking binary collisions into account [L. Sjögren, Phys. Rev. A 22, 2866 (1980)]. We find that an empiric prefactor of the memory function of the original MCT equations leads to similar results. In the third part we derive the equations for a mode-coupling theory for the spherical components of the stress tensor. Unfortunately it turns out that they are too complex to be solved numerically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete understanding of the glass transition isstill a challenging problem. Some researchers attributeit to the (hypothetical) occurrence of a static phasetransition, others emphasize the dynamical transitionof mode coupling-theory from an ergodic to a non ergodicstate. A class of disordered spin models has been foundwhich unifies both scenarios. One of these models isthe p-state infinite range Potts glass with p>4, whichexhibits in the thermodynamic limit both a dynamicalphase transition at a temperature T_D, and a static oneat T_0 < T_D. In this model every spins interacts withall the others, irrespective of distance. Interactionsare taken from a Gaussian distribution.In order to understand better its behavior forfinite number N of spins and the approach to thethermodynamic limit, we have performed extensive MonteCarlo simulations of the p=10 Potts glass up to N=2560.The time-dependent spin-autocorrelation function C(t)shows strong finite size effects and it does not showa plateau even for temperatures around the dynamicalcritical temperature T_D. We show that the N-andT-dependence of the relaxation time for T > T_D can beunderstood by means of a dynamical finite size scalingAnsatz.The behavior in the spin glass phase down to atemperature T=0.7 (about 60% of the transitiontemperature) is studied. Well equilibratedconfigurations are obtained with the paralleltempering method, which is also useful for properlyestablishing static properties, such as the orderparameter distribution function P(q). Evidence is givenfor the compatibility with a one step replica symmetrybreaking scenario. The study of the cumulants of theorder parameter does not permit a reliable estimation ofthe static transition temperature. The autocorrelationfunction at low T exhibits a two-step decay, and ascaling behavior typical of supercooled liquids, thetime-temperature superposition principle, is observed. Inthis region the dynamics is governed by Arrheniusrelaxations, with barriers growing like N^{1/2}.We analyzed the single spin dynamics down to temperaturesmuch lower than the dynamical transition temperature. We found strong dynamical heterogeneities, which explainthe non-exponential character of the spin autocorrelationfunction. The spins seem to relax according to dynamicalclusters. The model in three dimensions tends to acquireferromagnetic order for equal concentration of ferro-and antiferromagnetic bonds. The ordering has differentcharacteristics from the pure ferromagnet. The spinglass susceptibility behaves like chi_{SG} proportionalto 1/T in the region where a spin glass is predicted toexist in mean-field. Also the analysis of the cumulantsis consistent with the absence of spin glass orderingat finite temperature. The dynamics shows multi-scalerelaxations if a bimodal distribution of bonds isused. We propose to understand it with a model based onthe local spin configuration. This is consistent with theabsence of plateaus if Gaussian interactions are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite intensive research during the last decades, thetheoreticalunderstanding of supercooled liquids and the glasstransition is stillfar from being complete. Besides analytical investigations,theso-called energy-landscape approach has turned out to beveryfruitful. In the literature, many numerical studies havedemonstratedthat, at sufficiently low temperatures, all thermodynamicquantities can be predicted with the help of the propertiesof localminima in the potential-energy-landscape (PEL). The main purpose of this thesis is to strive for anunderstanding ofdynamics in terms of the potential energy landscape. Incontrast to the study of static quantities, this requirestheknowledge of barriers separating the minima.Up to now, it has been the general viewpoint that thermallyactivatedprocesses ('hopping') determine the dynamics only belowTc(the critical temperature of mode-coupling theory), in thesense that relaxation rates follow from local energybarriers.As we show here, this viewpoint should be revisedsince the temperature dependence of dynamics is governed byhoppingprocesses already below 1.5Tc.At the example of a binary mixture of Lennard-Jonesparticles (BMLJ),we establish a quantitative link from the diffusioncoefficient,D(T), to the PEL topology. This is achieved in three steps:First, we show that it is essential to consider wholesuperstructuresof many PEL minima, called metabasins, rather than singleminima. Thisis a consequence of strong correlations within groups of PELminima.Second, we show that D(T) is inversely proportional to theaverageresidence time in these metabasins. Third, the temperaturedependenceof the residence times is related to the depths of themetabasins, asgiven by the surrounding energy barriers. We further discuss that the study of small (but not toosmall) systemsis essential, in that one deals with a less complex energylandscapethan in large systems. In a detailed analysis of differentsystemsizes, we show that the small BMLJ system consideredthroughout thethesis is free of major finite-size-related artifacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed Monte Carlo and molecular dynamics simulations of suspensions of monodisperse, hard ellipsoids of revolution. Hard-particle models play a key role in statistical mechanics. They are conceptually and computationally simple, and they offer insight into systems in which particle shape is important, including atomic, molecular, colloidal, and granular systems. In the high density phase diagram of prolate hard ellipsoids we have found a new crystal, which is more stable than the stretched FCC structure proposed previously . The new phase, SM2, has a simple monoclinic unit cell containing a basis of two ellipsoids with unequal orientations. The angle of inclination is very soft for length-to-width (aspect) ratio l/w=3, while the other angles are not. A symmetric state of the unit cell exists, related to the densest-known packings of ellipsoids; it is not always the stable one. Our results remove the stretched FCC structure for aspect ratio l/w=3 from the phase diagram of hard, uni-axial ellipsoids. We provide evidence that this holds between aspect ratios 3 and 6, and possibly beyond. Finally, ellipsoids in SM2 at l/w=1.55 exhibit end-over-end flipping, warranting studies of the cross-over to where this dynamics is not possible. Secondly, we studied the dynamics of nearly spherical ellipsoids. In equilibrium, they show a first-order transition from an isotropic phase to a rotator phase, where positions are crystalline but orientations are free. When over-compressing the isotropic phase into the rotator regime, we observed super-Arrhenius slowing down of diffusion and relaxation, and signatures of the cage effect. These features of glassy dynamics are sufficiently strong that asymptotic scaling laws of the Mode-Coupling Theory of the glass transition (MCT) could be tested, and were found to apply. We found strong coupling of positional and orientational degrees of freedom, leading to a common value for the MCT glass-transition volume fraction. Flipping modes were not slowed down significantly. We demonstrated that the results are independent of simulation method, as predicted by MCT. Further, we determined that even intra-cage motion is cooperative. We confirmed the presence of dynamical heterogeneities associated with the cage effect. The transit between cages was seen to occur on short time scales, compared to the time spent in cages; but the transit was shown not to involve displacements distinguishable in character from intra-cage motion. The presence of glassy dynamics was predicted by molecular MCT (MMCT). However, as MMCT disregards crystallization, a test by simulation was required. Glassy dynamics is unusual in monodisperse systems. Crystallization typically intervenes unless polydispersity, network-forming bonds or other asymmetries are introduced. We argue that particle anisometry acts as a sufficient source of disorder to prevent crystallization. This sheds new light on the question of which ingredients are required for glass formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the influence of composition changes on the glass transition behavior of binary liquids in two and three spatial dimensions (2D/3D) is studied in the framework of mode-coupling theory (MCT).The well-established MCT equations are generalized to isotropic and homogeneous multicomponent liquids in arbitrary spatial dimensions. Furthermore, a new method is introduced which allows a fast and precise determination of special properties of glass transition lines. The new equations are then applied to the following model systems: binary mixtures of hard disks/spheres in 2D/3D, binary mixtures of dipolar point particles in 2D, and binary mixtures of dipolar hard disks in 2D. Some general features of the glass transition lines are also discussed. The direct comparison of the binary hard disk/sphere models in 2D/3D shows similar qualitative behavior. Particularly, for binary mixtures of hard disks in 2D the same four so-called mixing effects are identified as have been found before by Götze and Voigtmann for binary hard spheres in 3D [Phys. Rev. E 67, 021502 (2003)]. For instance, depending on the size disparity, adding a second component to a one-component liquid may lead to a stabilization of either the liquid or the glassy state. The MCT results for the 2D system are on a qualitative level in agreement with available computer simulation data. Furthermore, the glass transition diagram found for binary hard disks in 2D strongly resembles the corresponding random close packing diagram. Concerning dipolar systems, it is demonstrated that the experimental system of König et al. [Eur. Phys. J. E 18, 287 (2005)] is well described by binary point dipoles in 2D through a comparison between the experimental partial structure factors and those from computer simulations. For such mixtures of point particles it is demonstrated that MCT predicts always a plasticization effect, i.e. a stabilization of the liquid state due to mixing, in contrast to binary hard disks in 2D or binary hard spheres in 3D. It is demonstrated that the predicted plasticization effect is in qualitative agreement with experimental results. Finally, a glass transition diagram for binary mixtures of dipolar hard disks in 2D is calculated. These results demonstrate that at higher packing fractions there is a competition between the mixing effects occurring for binary hard disks in 2D and those for binary point dipoles in 2D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperpolarization techniques enhance the nuclear spin polarization and thus allow for new nuclear magnetic resonance applications like in vivo metabolic imaging. One of these techniques is Parahydrogen Induced Polarization (PHIP). It leads to a hyperpolarized 1H spin state which can be transferred to a heteronucleus like 13C by a radiofrequency (RF) pulse sequence. In this work, timing of such a sequence was analyzed and optimized for the molecule hydroxyethyl propionate. The pulse sequence was adapted for the work on a clinical magnetic resonance imaging (MRI) system which is usually equipped only with a single RF transmit channel. Optimal control theory optimizations were performed to achieve an optimized polarization transfer. A drawback of hyperpolarization is its limited lifetime due to relaxation processes. The lifetime can be increased by storing the hyperpolarization in a spin singlet state. The second part of this work therefore addresses the spin singlet state of the Cs-symmetric molecule dimethyl maleate which needs to be converted to the spin triplet state to be detectable. This conversion was realized on a clinical MRI system, both by field cycling and by two RF pulse sequences which were adapted and optimized for this purpose. Using multiple conversions enables the determination of the lifetime of the singlet state as well as the conversion efficiency of the RF pulse sequence. Both, the hyperpolarized 13C spin state and the converted singlet state were utilized for MR imaging. Careful choice of the echo time was shown to be crucial for both molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Dmd (Dms ) between neutral Bd and bar{Bd} (Bs and bar{Bs}) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing pbar{p} collisions at sqrt{s}=1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the "golden", fully hadronic decay mode Bs->Ds pi(phi pi)X at DØ is presented in this thesis. All data, taken between April 2002 and August 2007 with the DØ detector, corresponding to an integrated luminosity of int{L}dt=2.8/fb is used. The oscillation frequency Dms and the ratio |Vtd|/|Vts| are determined as Dms = (16.6 +0.5-0.4(stat) +0.4-0.3(sys)) 1/ps, |Vtd|/|Vts| = 0.213 +0.004-0.003(exp)pm 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management Control System (MCS) research is undergoing turbulent times. For a long time related to cybernetic instruments of management accounting only, MCS are increasingly seen as complex systems comprising not only formal accounting-driven instruments, but also informal mechanisms of control based on organizational culture. But not only have the means of MCS changed; researchers increasingly ap-ply MCS to organizational goals other than strategy implementation.rnrnTaking the question of "How do I design a well-performing MCS?" as a starting point, this dissertation aims at providing a comprehensive and integrated overview of the "current-state" of MCS research. Opting for a definition of MCS, broad in terms of means (all formal as well as informal MCS instruments), but focused in terms of objectives (behavioral control only), the dissertation contributes to MCS theory by, a) developing an integrated (contingency) model of MCS, describing its contingencies, as well as its subcomponents, b) refining the equifinality model of Gresov/Drazin (1997), c) synthesizing research findings from contingency and configuration research concerning MCS, taking into account case studies on research topics such as ambi-dexterity, equifinality and time as a contingency.