12 resultados para heat kernel,worldline model,perturbative quantum gravity
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.
Resumo:
Wir untersuchen die Mathematik endlicher, an ein Wärmebad gekoppelter Teilchensysteme. Das Standard-Modell der Quantenelektrodynamik für Temperatur Null liefert einen Hamilton-Operator H, der die Energie von Teilchen beschreibt, welche mit Photonen wechselwirken. Im Heisenbergbild ist die Zeitevolution des physikalischen Systems durch die Wirkung einer Ein-Parameter-Gruppe auf eine Menge von Observablen A gegeben: Diese steht im Zusammenhang mit der Lösung der Schrödinger-Gleichung für H. Um Zustände von A, welche das physikalische System in der Nähe des thermischen Gleichgewichts zur Temperatur T darstellen, zu beschreiben, folgen wir dem Ansatz von Jaksic und Pillet, eine Darstellung von A zu konstruieren. Die Vektoren in dieser Darstellung definieren die Zustände, die Zeitentwicklung wird mit Hilfe des Standard Liouville-Operators L beschrieben. In dieser Doktorarbeit werden folgende Resultate bewiesen bzw. hergeleitet: - die Konstuktion einer Darstellung - die Selbstadjungiertheit des Standard Liouville-Operators - die Existenz eines Gleichgewichtszustandes in dieser Darstellung - der Limes des physikalischen Systems für große Zeiten.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.
Resumo:
In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.
Resumo:
Wir analysieren die Rolle von "Hintergrundunabhängigkeit" im Zugang der effektiven Mittelwertwirkung zur Quantengravitation. Wenn der nicht-störungstheoretische Renormierungsgruppen-(RG)-Fluß "hintergrundunabhängig" ist, muß die Vergröberung durch eine nicht spezifizierte, variable Metrik definiert werden. Die Forderung nach "Hintergrundunabhängigkeit" in der Quantengravitation führt dazu, daß die funktionale RG-Gleichung von zusätzlichen Feldern abhängt; dadurch unterscheidet sich der RG-Fluß in der Quantengravitation deutlich von dem RG-Fluß einer gewöhnlichen Quantentheorie, deren Moden-Cutoff von einer starren Metrik abhängt. Beispielsweise kann in der "hintergrundunabhängigen" Theorie ein Nicht-Gauß'scher Fixpunkt existieren, obwohl die entsprechende gewöhnliche Quantentheorie keinen solchen entwickelt. Wir untersuchen die Bedeutung dieses universellen, rein kinematischen Effektes, indem wir den RG-Fluß der Quanten-Einstein-Gravitation (QEG) in einem "konform-reduzierten" Zusammenhang untersuchen, in dem wir nur den konformen Faktor der Metrik quantisieren. Alle anderen Freiheitsgrade der Metrik werden vernachlässigt. Die konforme Reduktion der Einstein-Hilbert-Trunkierung zeigt exakt dieselben qualitativen Eigenschaften wie in der vollen Einstein-Hilbert-Trunkierung. Insbesondere besitzt sie einen Nicht-Gauß'schen Fixpunkt, der notwendig ist, damit die Gravitation asymptotisch sicher ist. Ohne diese zusätzlichen Feldabhängigkeiten ist der RG-Fluß dieser Trunkierung der einer gewöhnlichen $phi^4$-Theorie. Die lokale Potentialnäherung für den konformen Faktor verallgemeinert den RG-Fluß in der Quantengravitation auf einen unendlich-dimensionalen Theorienraum. Auch hier finden wir sowohl einen Gauß'schen als auch einen Nicht-Gauß'schen Fixpunkt, was weitere Hinweise dafür liefert, daß die Quantengravitation asymptotisch sicher ist. Das Analogon der Metrik-Invarianten, die proportional zur dritten Potenz der Krümmung ist und die die störungstheoretische Renormierbarkeit zerstört, ist unproblematisch für die asymptotische Sicherheit der konform-reduzierten Theorie. Wir berechnen die Skalenfelder und -imensionen der beiden Fixpunkte explizit und diskutieren mögliche Einflüsse auf die Vorhersagekraft der Theorie. Da der RG-Fluß von der Topologie der zugrundeliegenden Raumzeit abhängt, diskutieren wir sowohl den flachen Raum als auch die Sphäre. Wir lösen die Flußgleichung für das Potential numerisch und erhalten Beispiele für RG-Trajektorien, die innerhalb der Ultraviolett-kritischen Mannigfaltigkeit des Nicht-Gauß'schen Fixpunktes liegen. Die Quantentheorien, die durch einige solcher Trajektorien definiert sind, zeigen einen Phasenübergang von der bekannten (Niederenergie-) Phase der Gravitation mit spontan gebrochener Diffeomorphismus-Invarianz zu einer neuen Phase von ungebrochener Diffeomorphismus-Invarianz. Diese Hochenergie-Phase ist durch einen verschwindenden Metrik-Erwartungswert charakterisiert.
Resumo:
In hadronischen Kollisionen entstehen bei einem Großteil der Ereignisse mit einem hohen Impulsübertrag Paare aus hochenergetischen Jets. Deren Produktion und Eigenschaften können mit hoher Genauigkeit durch die Störungstheorie in der Quantenchromodynamik (QCD) vorhergesagt werden. Die Produktion von \textit{bottom}-Quarks in solchen Kollisionen kann als Maßstab genutzt werden, um die Vorhersagen der QCD zu testen, da diese Quarks die Dynamik des Produktionsprozesses bei Skalen wieder spiegelt, in der eine Störungsrechnung ohne Einschränkungen möglich ist. Auf Grund der hohen Masse von Teilchen, die ein \textit{bottom}-Quark enthalten, erhält der gemessene, hadronische Zustand den größten Teil der Information von dem Produktionsprozess der Quarks. Weil sie eine große Produktionsrate besitzen, spielen sie und ihre Zerfallsprodukte eine wichtige Rolle als Untergrund in vielen Analysen, insbesondere in Suchen nach neuer Physik. In ihrer herausragenden Stellung in der dritten Quark-Generation könnten sich vermehrt Zeichen im Vergleich zu den leichteren Quarks für neue Phänomene zeigen. Daher ist die Untersuchung des Verhältnisses zwischen der Produktion von Jets, die solche \textit{bottom}-Quarks enthalten, auch bekannt als $b$-Jets, und aller nachgewiesener Jets ein wichtiger Indikator für neue massive Objekte. In dieser Arbeit werden die Produktionsrate und die Korrelationen von Paaren aus $b$-Jets bestimmt und nach ersten Hinweisen eines neuen massiven Teilchens, das bisher nicht im Standard-Modell enthalten ist, in dem invarianten Massenspektrum der $b$-Jets gesucht. Am Large Hadron Collider (LHC) kollidieren zwei Protonenstrahlen bei einer Schwerpunktsenergie von $\sqrt s = 7$ TeV, und es werden viele solcher Paare aus $b$-Jets produziert. Diese Analyse benutzt die aufgezeichneten Kollisionen des ATLAS-Detektors. Die integrierte Luminosität der verwendbaren Daten beläuft sich auf 34~pb$^{-1}$. $b$-Jets werden mit Hilfe ihrer langen Lebensdauer und den rekonstruierten, geladenen Zerfallsprodukten identifiziert. Für diese Analyse müssen insbesondere die Unterschiede im Verhalten von Jets, die aus leichten Objekten wie Gluonen und leichten Quarks hervorgehen, zu diesen $b$-Jets beachtet werden. Die Energieskala dieser $b$-Jets wird untersucht und die zusätzlichen Unsicherheit in der Energiemessung der Jets bestimmt. Effekte bei der Jet-Rekonstruktion im Detektor, die einzigartig für $b$-Jets sind, werden studiert, um letztlich diese Messung unabhängig vom Detektor und auf Niveau der Hadronen auswerten zu können. Hiernach wird die Messung zu Vorhersagen auf nächst-zu-führender Ordnung verglichen. Dabei stellt sich heraus, dass die Vorhersagen in Übereinstimmung zu den aufgenommenen Daten sind. Daraus lässt sich schließen, dass der zugrunde liegende Produktionsmechanismus auch in diesem neu erschlossenen Energiebereich am LHC gültig ist. Jedoch werden auch erste Hinweise auf Mängel in der Beschreibung der Eigenschaften dieser Ereignisse gefunden. Weiterhin können keine Anhaltspunkte für eine neue Resonanz, die in Paare aus $b$-Jets zerfällt, in dem invarianten Massenspektrum bis etwa 1.7~TeV gefunden werden. Für das Auftreten einer solchen Resonanz mit einer Gauß-förmigen Massenverteilung werden modell-unabhängige Grenzen berechnet.
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit derAutomatisierung von Berechnungen virtuellerStrahlungskorrekturen in perturbativen Quantenfeldtheorien.Die Berücksichtigung solcher Korrekturen aufMehrschleifen-Ebene in der Störungsreihenentwicklung istheute unabdingbar, um mit der wachsenden Präzisionexperimenteller Resultate Schritt zu halten. Im allgemeinen kinematischen Fall können heute nur dieEinschleifen-Korrekturen als theoretisch gelöst angesehenwerden -- für höhere Ordnungen liegen nur Teilergebnissevor. In Mainz sind in den letzten Jahren einige neuartigeMethoden zur Integration von Zweischleifen-Feynmandiagrammenentwickelt und im xloops-Paket in algorithmischer Formteilweise erfolgreich implementiert worden. Die verwendetenVerfahren sind eine Kombination exakter symbolischerRechenmethoden mit numerischen. DieZweischleifen-Vierbeinfunktionen stellen in diesem Rahmenein neues Kapitel dar, das durch seine große Anzahl vonfreien kinematischen Parametern einerseits leichtunüberschaubar wird und andererseits auch auf symbolischerEbene die bisherigen Anforderungen übersteigt. Sie sind ausexperimenteller Sicht aber für manche Streuprozesse vongroßem Interesse. In dieser Arbeit wurde, basierend auf einer Idee von DirkKreimer, ein Verfahren untersucht, welches die skalarenVierbeinfunktionen auf Zweischleifen-Niveau ganz ohneRandbedingungen an den Parameterraum zu integrierenversucht. Die Struktur der nach vier Residuenintegrationenauftretenden Terme konnte dabei weitgehend geklärt und dieKomplexität der auftretenden Ausdrücke soweit verkleinertwerden, dass sie von heutigen Rechnern darstellbar sind.Allerdings ist man noch nicht bei einer vollständigautomatisierten Implementierung angelangt. All dies ist dasThema von Kapitel 2. Die Weiterentwicklung von xloops über Zweibeinfunktionenhinaus erschien aus vielfältigen Gründen allerdings nichtmehr sinnvoll. Im Rahmen dieser Arbeit wurde daher einradikaler Bruch vollzogen und zusammen mit C. Bauer und A.Frink eine Programmbibliothek entworfen, die als Vehikel fürsymbolische Manipulationen dient und es uns ermöglicht,übliche symbolische Sprachen wie Maple durch C++ zuersetzen. Im dritten Kapitel wird auf die Gründeeingegangen, warum diese Umstellung sinnvoll ist, und dabeidie Bibliothek GiNaC vorgestellt. Im vierten Kapitel werdenDetails der Implementierung dann im Einzelnen vorgestelltund im fünften wird sie auf ihre Praxistauglichkeituntersucht. Anhang A bietet eine Übersicht über dieverwendeten Hilfsmittel komplexer Analysis und Anhang Bbeschreibt ein bewährtes numerisches Instrument.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Die Untersuchung von dissipativen Quantensystemen erm¨oglicht es, Quantenph¨anomene auch auf makroskopischen L¨angenskalen zu beobachten. Das in dieser Dissertation gew¨ahlte mikroskopische Modell erlaubt es, den bisher nur ph¨anomenologisch zug¨anglichen Effekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu untersuchen. Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch an r anharmonische Freiheitsgrade gekoppelt sind. Die F¨alle einer, respektive zwei anharmonischer Bindungen werden in dieser Arbeit explizit betrachtet. Hierf¨ur wird eine analytische Trennung der harmonischen von den anharmonischen Freiheitsgraden auf zwei verschiedenen Wegen durchgef¨uhrt. Das anharmonische Potential wird als symmetrisches Doppelmuldenpotential gew¨ahlt, welches mit Hilfe der Wick Rotation die Berechnung der ¨Uberg¨ange zwischen beiden Minima erlaubt. Das Eliminieren der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon Pfadintegral-Formalismus [21]. In dieser Arbeit wird zuerst die Positionsabh¨angigkeit einer anharmonischen Bindung im Tunnelverhalten untersucht. F¨ur den Fall einer fernab von den R¨andern lokalisierten anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei der Temperatur T = 0 zu einem Phasen¨ubergang in Abh¨angigkeit einer kritischen Kopplungskonstanten Ccrit f¨uhrt. Dieser Phasen¨ubergang wurde bereits in rein ph¨anomenologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf das Ising-Modell [26] erkl¨art. Wenn die anharmonische Bindung jedoch an einem der R¨ander der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden anharmonischen Bindungen abh¨angigen Zeit tD ein ¨Ubergang von Ohmscher zu super- Ohmscher Dissipation auf, welche im Kern KM(τ ) klar sichtbar ist. F¨ur zwei anharmonische Bindungen spielt deren indirekteWechselwirkung eine entscheidende Rolle. Es wird gezeigt, dass der Abstand D beider Bindungen und die Wahl des Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeit p(t) analog zu [14], jedoch f¨ur zwei anharmonische Bindungen, berechnet. Als Resultat erhalten wir entweder Ohmsche Dissipation f¨ur den Fall, dass beide anharmonischen Bindungen ihre Gesamtl¨ange ¨andern, oder super-Ohmsche Dissipation, wenn beide anharmonischen Bindungen durch das Tunneln ihre Gesamtl¨ange nicht ¨andern.