6 resultados para discrete element model

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis foliation boudinage and related structures have been studied based on field observations and numerical modeling. Foliation boudinage occurs in foliated rocks independent of lithology contrast. The developing structures are called ‘Foliation boudinage structures (FBSs)’ and show evidence for both ductile and brittle deformation. They are recognized in rocks by perturbations in monotonous foliation adjacent to a central discontinuity, mostly filled with vein material. Foliation boudinage structures have been studied in the Çine Massif in SW-Turkey and the Furka Pass-Urseren Zone in central Switzerland. Four common types have been distinguished in the field, named after vein geometries in their boudin necks in sections normal to the boudin axis: lozenge-, crescent-, X- and double crescent- type FBSs. Lozengetype FBSs are symmetric and characterized by lozenge-shaped veins in their boudin neck with two cusps facing opposite sides. A symmetrical pair of flanking folds occurs on the two sides of the vein. Crescent-type FBSs are asymmetric with a single smoothly curved vein in the boudin neck, with vein contacts facing to one side. X- and double crescent- type FBSs are asymmetric. The geometry of the neck veins resembles that of cuspate-lobate structures. The geometry of flanking structures is related to the shape of the veins. The veins are mostly filled with massive quartz in large single crystals, commonly associated with tourmaline, feldspar and biotite and in some cases with chlorite. The dominance of large facetted single quartz crystals and spherulitic chlorite in the veins suggest that the minerals grew into open fluidfilled space. FLAC experiments show that fracture propagation during ductile deformation strongly influences the geometry of developing veins. The cusps of the veins are better developed in the case of propagating fractures. The shape of the boudin neck veins in foliation boudinage depends on the initial orientation and shape of the fracture, the propagation behaviour of the fracture, the geometry of bulk flow, and the stage at which mineral filling takes place. A two dimensional discrete element model was used to study the progressive development of foliation boudinage structures and the behavior of visco-elastic material deformed under pure shear conditions. Discrete elements are defined by particles that are connected by visco-elastic springs. Springs can break. A number of simulations was Abstract vii performed to investigate the effect of material properties (Young’s modulus, viscosity and breaking strength) and anisotropy on the developing structures. The models show the development of boudinage in single layers, multilayers and in anisotropic materials with random mica distribution. During progressive deformation different types of fractures develop from mode I, mode II to the combination of both. Voids develop along extension fractures, at intersections of conjugate shear fractures and in small pull-apart structures along shear fractures. These patterns look similar to the natural examples. Fractures are more localized in the models where the elastic constants are low and the competence contrast is high between the layers. They propagate through layers where the constants are high and the competence contrast is relatively low. Flow localize around these fractures and voids. The patterns similar to symmetric boudinage structures and extensional neck veins (e.g. lozenge type) more commonly develop in the models with lower elastic constants and anisotropy. The patterns similar to asymmetric foliation boudinage structures (e.g. X-type) develop associated with shear fractures in the models where elastic constants and anisotropy of the materials are relatively high. In these models boudin neck veins form commonly at pull-aparts along the shear fractures and at the intersection of fractures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit geht es um die Schätzung von Parametern in zeitdiskreten ergodischen Markov-Prozessen im allgemeinen und im CIR-Modell im besonderen. Beim CIR-Modell handelt es sich um eine stochastische Differentialgleichung, die von Cox, Ingersoll und Ross (1985) zur Beschreibung der Dynamik von Zinsraten vorgeschlagen wurde. Problemstellung ist die Schätzung der Parameter des Drift- und des Diffusionskoeffizienten aufgrund von äquidistanten diskreten Beobachtungen des CIR-Prozesses. Nach einer kurzen Einführung in das CIR-Modell verwenden wir die insbesondere von Bibby und Sørensen untersuchte Methode der Martingal-Schätzfunktionen und -Schätzgleichungen, um das Problem der Parameterschätzung in ergodischen Markov-Prozessen zunächst ganz allgemein zu untersuchen. Im Anschluss an Untersuchungen von Sørensen (1999) werden hinreichende Bedingungen (im Sinne von Regularitätsvoraussetzungen an die Schätzfunktion) für die Existenz, starke Konsistenz und asymptotische Normalität von Lösungen einer Martingal-Schätzgleichung angegeben. Angewandt auf den Spezialfall der Likelihood-Schätzung stellen diese Bedingungen zugleich lokal-asymptotische Normalität des Modells sicher. Ferner wird ein einfaches Kriterium für Godambe-Heyde-Optimalität von Schätzfunktionen angegeben und skizziert, wie dies in wichtigen Spezialfällen zur expliziten Konstruktion optimaler Schätzfunktionen verwendet werden kann. Die allgemeinen Resultate werden anschließend auf das diskretisierte CIR-Modell angewendet. Wir analysieren einige von Overbeck und Rydén (1997) vorgeschlagene Schätzer für den Drift- und den Diffusionskoeffizienten, welche als Lösungen quadratischer Martingal-Schätzfunktionen definiert sind, und berechnen das optimale Element in dieser Klasse. Abschließend verallgemeinern wir Ergebnisse von Overbeck und Rydén (1997), indem wir die Existenz einer stark konsistenten und asymptotisch normalen Lösung der Likelihood-Gleichung zeigen und lokal-asymptotische Normalität für das CIR-Modell ohne Einschränkungen an den Parameterraum beweisen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.