9 resultados para desorption atmospheric pressure photoionization
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
Volatile amines are prominent indicators of food freshness, as they are produced during many microbiological food degradation processes. Monitoring and indicating the volatile amine concentration within the food package by intelligent packaging solutions might therefore be a simple yet powerful way to control food safety throughout the distribution chain.rnrnIn this context, this work aims to the formation of colourimetric amine sensing surfaces on different substrates, especially transparent PET packaging foil. The colour change of the deposited layers should ideally be discernible by the human eye to facilitate the determination by the end-user. rnrnDifferent tailored zinc(II) and chromium(III) metalloporphyrins have been used as chromophores for the colourimetric detection of volatile amines. A new concept to increase the porphyrins absorbance change upon exposure to amines is introduced. Moreover, the novel porphyrins’ processability during the deposition process is increased by their enhanced solubility in non-polar solvents.rnrnThe porphyrin chromophores have successfully been incorporated into polysiloxane matrices on different substrates via a dielectric barrier discharge enhanced chemical vapour deposition. This process allows the use of nitrogen as a cheap and abundant plasma gas, produces minor amounts of waste and by-products and can be easily introduced into (existing) roll-to-roll production lines. The formed hybrid sensing layers tightly incorporate the porphyrins and moreover form a porous structure to facilitate the amines diffusion to and interaction with the chromophores.rnrnThe work is completed with the thorough analysis of the porphyrins’ amine sensing performance in solution as well as in the hybrid coatings . To reveal the underlying interaction mechanisms, the experimental results are supported by DFT calculations. The deposited layers could be used for the detection of NEt3 concentrations below 10 ppm in the gas phase. Moreover, the coated foils have been tested in preliminary food storage experiments. rnrnThe mechanistic investigations on the interaction of amines with chromium(III) porphyrins revealed a novel pathway to the formation of chromium(IV) oxido porphyrins. This has been used for electrochemical epoxidation reactions with dioxygen as the formal terminal oxidant.rn
Resumo:
Die heterogenen Reaktionen von N2O5 bzw. NO3 auf mineralischen Staubpartikeln wurden untersucht, um deren Einfluss auf den Abbau atmosphärischer Stickoxide (NOx) sowie auf die chemische Veränderung der Staubpartikel während ihres Transportes durch die Atmosphäre besser verstehen zu können. Die experimentellen Studien wurden bei Atmosphärendruck, Raumtemperatur und unterschiedlichen relativen Luftfeuchten durchgeführt. Der Aufnahmekoeffizient γ(N2O5) von N2O5 auf dispergiertem Staub aus der Sahara wurde zu 0,020 ± 0,002 (1σ) bestimmt, unabhängig von der relativen Feuchte (0 - 67 %) sowie der N2O5-Konzentration (5x1011 - 3x1013 Moleküle cm-3).rnDie Analyse der Reaktionsprodukte in der Gasphase sowie auf der Partikeloberfläche führt zu der Annahme, dass N2O5 auf der Staubpartikeloberfläche zu Nitrat hydrolysiert wird. Es konnte kein Einfluss der relativen Feuchte auf den Aufnahmekoeffizienten ermittelt werden, was durch das vorhandene interlamellare Wasser, welches bis zu 10 % der Partikelmasse betragen kann, erklärbar ist. Der gemessene Wert des Aufnahmekoeffizienten ist unabhängig von der Eingangs-N2O5-Konzentration, was sich über die sehr große innere Oberfläche der Partikel erklären lässt. Dennoch ließ sich durch eine vorherige Konditionierung der Partikel mit gasförmigem HNO3, was eine Nitratanreicherung an der Oberfläche bewirkt, die Effizienz der N2O5-Aufnahme auf die Staubpartikel reduzieren. Zusätzliche Studien befassten sich mit der Bestimmung des Aufnahmekoeffizienten von N2O5 auf Illit-Partikeln und auf Teststaub aus Arizona. Bei einer relativen Luftfeuchte von 0 % wurden für γ(N2O5) Werte von 0,084 ± 0,019 (1σ) für Illit und von 0,010 ± 0,001 (1σ) für Arizona Teststaub ermittelt.rnUnter Anwendung einer neuartigen Messmethode, die auf der zeitgleichen Messung der Konzentrationsabnahme von NO3 und N2O5 relativ zueinander beruht, wurde das Verhältnis γ(NO3)/γ(N2O5) der Aufnahmekoeffizienten von NO3 und N2O5 auf Saharastaub zu 0,9 ± 0,4 (1σ) bestimmt. Dieser Wert war unabhängig von der relativen Feuchte, den NO3- und N2O5-Konzentrationen sowie der Reaktionszeit, obwohl eine Oberflächendeaktivierung für beide Spurenstoffe beobachtet wurde.
Resumo:
Die Dissertationsschrift beschäftigt sich mit der Entwicklung und Anwendung einer alternativen Probenzuführungstechnik für flüssige Proben in der Massenspektrometrie. Obwohl bereits einige Anstrengungen zur Verbesserung unternommen wurden, weisen konventionelle pneumatische Zerstäuber- und Sprühkammersysteme, die in der Elementspurenanalytik mittels induktiv gekoppeltem Plasma (ICP) standardmäßig verwendet werden, eine geringe Gesamteffizienz auf. Pneumatisch erzeugtes Aerosol ist durch eine breite Tropfengrößenverteilung gekennzeichnet, was den Einsatz einer Sprühkammer bedingt, um die Aerosolcharakteristik an die Betriebsbedingungen des ICPs anzupassen.. Die Erzeugung von Tropfen mit einer sehr engen Tropfengrößenverteilung oder sogar monodispersen Tropfen könnte die Effizienz des Probeneintrags verbessern. Ein Ziel dieser Arbeit ist daher, Tropfen, die mittels des thermischen Tintenstrahldruckverfahrens erzeugt werden, zum Probeneintrag in der Elementmassenspektrometrie einzusetzen. Das thermische Tintenstrahldruckverfahren konnte in der analytischen Chemie im Bereich der Oberflächenanalytik mittels TXRF oder Laserablation bisher zur gezielten, reproduzierbaren Deposition von Tropfen auf Oberflächen eingesetzt werden. Um eine kontinuierliche Tropfenerzeugung zu ermöglichen, wurde ein elektronischer Mikrokontroller entwickelt, der eine Dosiereinheit unabhängig von der Hard- und Software des Druckers steuern kann. Dabei sind alle zur Tropfenerzeugung relevanten Parameter (Frequenz, Heizpulsenergie) unabhängig voneinander einstellbar. Die Dosiereinheit, der "drop-on-demand" Aerosolgenerator (DOD), wurde auf eine Aerosoltransportkammer montiert, welche die erzeugten Tropfen in die Ionisationsquelle befördert. Im Bereich der anorganischen Spurenanalytik konnten durch die Kombination des DOD mit einem automatischen Probengeber 53 Elemente untersucht und die erzielbare Empfindlichkeiten sowie exemplarisch für 15 Elemente die Nachweisgrenzen und die Untergrundäquivalentkonzentrationen ermittelt werden. Damit die Vorteile komfortabel genutzt werden können, wurde eine Kopplung des DOD-Systems mit der miniaturisierten Fließinjektionsanalyse (FIA) sowie miniaturisierten Trenntechniken wie der µHPLC entwickelt. Die Fließinjektionsmethode wurde mit einem zertifizierten Referenzmaterial validiert, wobei für Vanadium und Cadmium die zertifizierten Werte gut reproduziert werden konnten. Transiente Signale konnten bei der Kopplung des Dosiersystems in Verbindung mit der ICP-MS an eine µHPLC abgebildet werden. Die Modifikation der Dosiereinheit zum Ankoppeln an einen kontinuierlichen Probenfluss bedarf noch einer weiteren Reduzierung des verbleibenden Totvolumens. Dazu ist die Unabhängigkeit von den bisher verwendeten, kommerziell erhältlichen Druckerpatronen anzustreben, indem die Dosiereinheit selbst gefertigt wird. Die Vielseitigkeit des Dosiersystems wurde mit der Kopplung an eine kürzlich neu entwickelte Atmosphärendruck-Ionisationsmethode, die "flowing atmospheric-pressure afterglow" Desorptions/Ionisations Ionenquelle (FAPA), aufgezeigt. Ein direkter Eintrag von flüssigen Proben in diese Quelle war bislang nicht möglich, es konnte lediglich eine Desorption von eingetrockneten Rückständen oder direkt von der Flüssigkeitsoberfläche erfolgen. Die Präzision der Analyse ist dabei durch die variable Probenposition eingeschränkt. Mit dem Einsatz des DOD-Systems können flüssige Proben nun direkt in die FAPA eingetragen, was ebenfalls das Kalibrieren bei quantitativen Analysen organischer Verbindungen ermöglicht. Neben illegalen Drogen und deren Metaboliten konnten auch frei verkäufliche Medikamente und ein Sprengstoffanalogon in entsprechend präpariertem reinem Lösungsmittel nachgewiesen werden. Ebenso gelang dies in Urinproben, die mit Drogen und Drogenmetaboliten versetzt wurden. Dabei ist hervorzuheben, dass keinerlei Probenvorbereitung notwendig war und zur Ermittlung der NWG der einzelnen Spezies keine interne oder isotopenmarkierte Standards verwendet wurden. Dennoch sind die ermittelten NWG deutlich niedriger, als die mit der bisherigen Prozedur zur Analyse flüssiger Proben erreichbaren. Um im Vergleich zu der bisher verwendeten "pin-to-plate" Geometrie der FAPA die Lösungsmittelverdampfung zu beschleunigen, wurde eine alternative Elektrodenanordnung entwickelt, bei der die Probe länger in Kontakt mit der "afterglow"-Zone steht. Diese Glimmentladungsquelle ist ringförmig und erlaubt einen Probeneintrag mittels eines zentralen Gasflusses. Wegen der ringförmigen Entladung wird der Name "halo-FAPA" (h-FAPA) für diese Entladungsgeometrie verwendet. Eine grundlegende physikalische und spektroskopische Charakterisierung zeigte, dass es sich tatsächlich um eine FAPA Desorptions/Ionisationsquelle handelt.
Resumo:
Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn
Resumo:
In der vorliegenden Arbeit wurde die Druckabhängigkeit der molekularen Dynamik mittels 2H-NMR und Viskositätsmessungen untersucht. Für die Messungen wurde der niedermolekulare organische Glasbildner ortho-Terphenyl (OTP) ausgewählt, da dieser aufgrund einer Vielzahl vorliegender Arbeiten als Modellsubstanz angesehen werden kann. Daneben wurden auch Messungen an Salol durchgeführt.Die Untersuchungen erstreckten sich über einen weiten Druck- und Temperaturbereich ausgehend von der Schmelze bis weit in die unterkühlte Flüssigkeit. Dieser Bereich wurde aufgrund experimenteller Voraussetzungen immer durch eine Druckerhöhung erreicht.Beide Substanzen zeigten druckabhängig ein Verhalten, das dem der Temperaturvariation bei Normaldruck sehr ähnelt. Auf einer Zeitskala der molekularen Dynamik von 10E-9 s bis zu 10E+2 s wurde daher am Beispiel von OTP ein Druck-Temperatur-Zeit-Superpositionsprinzip diskutiert. Zudem konnte eine Temperatur-Dichte-Skalierung mit rho T-1/4 erfolgreich durchgeführt werden. Dies entspricht einem rein repulsiven Potentialverlauf mit rho -12±3 .Zur Entscheidung, ob die Verteilungsbreiten der mittleren Rotationskorrelationszeiten durch Druckvariation beeinflußt werden, wurden auch Ergebnisse anderer experimenteller Methoden herangezogen. Unter Hinzuziehung aller Meßergebnisse kann sowohl eine Temperatur- als auch Druckabhängigkeit der Verteilungsbreite bestätigt werden. Zur Auswertung von Viskositätsdaten wurde ein Verfahren vorgestellt, das eine quantitative Aussage über den Fragilitätsindex von unterkühlten Flüssigkeiten auch dann zuläßt, wenn die Messungen nicht bis zur Glasübergangstemperatur Tg durchgeführt werden. Die Auswertung der druckabhängigen Viskositätsdaten von OTP und Salol zeigt einen sehr differenzierten druckabhängigen Verlauf des Fragilitätsindexes für beide Glasbildner. OTP zeigt zunächst eine leichte Abnahme und danach wieder eine Zunahme des Fragilitätsindexes, dieses Ergebnis wird auch von Simulationsdaten, die der Literatur entnommen wurden, unterstützt. Salol hingegen zeigt zunächst eine deutliche Zunahme und danach eine Abnahme des Fragilitätsindexes. Das unterschiedliche Verhalten der beiden Glasbildner mit ähnlichem Fragilitätsindex bei Normaldruck wird auf die Wasserstoffbrückenbindungen innerhalb von Salol zurückgeführt.
Resumo:
Ein neu konstruierter Kondensationskernzähler COPAS (COndensation PArticle counting System) für in-situ-Messungen der Konzentration von Aitken-Teilchen und ultrafeinen Aerosolpartikeln wurde im Rahmen dieser Arbeit erstmals erfolgreich bei Flugzeugmessungen eingesetzt. COPAS ist ein für flugzeuggestützte Messungen an Bord des Forschungsflugzeuges „Geophysica“ in der oberen Troposphäre und unteren Stratosphäre angepaßtes und voll automatisiertes System. Die Verfahrensweise, die Aerosolpartikel des Größenbereichs mit Durchmessern d < 100 nm zum Anwachsen zu bringen, um sie mittels optischer Detektion zu erfassen, ist im COPAS durch das Prinzip der thermischen Diffusion realisiert, wodurch eine kontinuierliche Messung der Aerosolkonzentration mit der untersten Nachweisgrenze für Partikeldurchmesser von d = 6 nm gewährleistet ist. Durch die Verwendung einer Aerosolheizung ist die Unterscheidung von volatilem und nichtvolatilem Anteil des Aerosols mit COPAS möglich. In umfassenden Laborversuchen wurde das COPAS-System hinsichtlich der unteren Nachweisgrenze in Abhängigkeit von der Betriebstemperatur und bei verschiedenen Druckbedingungen charakterisiert sowie die Effizienz der Aerosolheizung bestimmt. Flugzeuggestützte Messungen fanden in mittleren und polaren Breiten im Rahmen des EUPLEX-/ENVISAT-Validierungs–Projektes und in den Tropen während der TROCCINOX/ENVISAT-Kampagne statt. Die Messungen der vertikalen Konzentrationsverteilung des Aerosols ergaben in polaren Breiten eine Zunahme der Konzentration oberhalb von 17 km innerhalb des polaren Vortex mit hohem Anteil nichtvolatiler Partikel von bis zu 70 %. Als Ursache hierfür wird der Eintrag von meteoritischen Rauchpartikeln aus der Mesosphäre in die obere und mittlere Stratosphäre des Vortex angesehen. Ferner konnte in der unteren Stratosphäre des polaren Vortex der Einfluß troposphärischer Luft aus niedrigen Breiten festgestellt werden, die sich in einer hohen Variabilität der Aerosolpartikelkonzentration manifestiert. In tropischen Breiten wurde die Tropopausenregion untersucht. Dabei wurden Konzentrationen von bis zu 104 ultrafeiner Aerosolpartikel mit 6 nm < d < 14 nm pro cm-3 Luft gemessen, deren hoher volatiler Anteil einen sicheren Hinweis darauf gibt, daß die Partikel durch den Prozeß der homogenen Nukleation gebildet wurden. Damit konnte erstmals die Schlußfolgerungen von Brock et al. (1995) durch direkte Messungen der ultrafeinen Partikelkonzentration weitergehend belegt werden, daß in der tropischen Tropopausenregion die Neubildung von Aerosolpartikeln durch homogene Nukleation stattfindet. Die vertikalen Verteilungen der stratosphärischen Aerosolpartikelkonzentration mittlerer Breiten verdeutlichen die Ausbildung einer über 6 Jahre hinweg nahezu konstanten Hintergrundkonzentration des stratosphärischen Aerosols unter vulkanisch unbeeinflußten Bedingungen. Ferner gibt die vergleichende Untersuchung der stratosphärischen Aerosolpartikelkonzentration aus polaren, mittleren und tropischen Breiten Aufschluß über den Transport und die Prozessierung des stratosphärischen Aerosols und insbesondere über den Austausch von Luftmassen zwischen der Stratosphäre und der Troposphäre.
Resumo:
Mit Hilfe eines Aerosolströmungsreaktors wurden erstmals die heterogenen Reaktionen der Spurengase N2O5, HNO3 und NO2 mit verschiedenen synthetischen Mineralstäuben und dem natürlichen Mineralstaub Saharastaub untersucht. Es wurden Aufnahmekoeffizienten für die Reaktion von N2O5 mit Saharastaub, Arizona Teststaub, Kalzit und Quartz bei Zimmertemperatur, Atmosphärendruck, unterschiedlichen relativen Feuchten und N2O5-Konzentrationen zwischen 5·10^12 und 3·10^13 Moleküle/cm^3 bestimmt. Die Aufnahmekoeffizienten für N2O5 auf Mineralstaub lagen zwischen 1,90·10^−2 (Saharastaub) und 0,63·10^−2 (Kalzit), unabhängig von der relativen Feuchte und der N2O5-Konzentration. Als Reaktionsprodukt wurde HNO3 in der Gasphase gefunden. Es wurde eine Aufnahme von HNO3 auf Saharastaub beobachtet, NO2 wurde nicht caufgenommen. Für NO2 konnte eine obere Grenze von gamma = 4·10^−4 für den Aufnahmekoeffizienten gewonnen werden. Die Aufnahme von N2O5 und auch HNO3 beeinflusst die photochemischen Kreisläufe von NOx und NOy in der Troposphäre. Zum einen führt die Aufnahme von N2O5 zu einer Abnahme in Ozonkonzentrationen und zum anderen zu einer Reduktion von NO3, was beides die oxidative Kraft in der Troposphäre herabsetzt.
Resumo:
Atmosphärische Aerosole beeinflussen den Strahlungshaushalt und damit das Klima der Erde. Dies geschieht sowohl direkt (Streuung und Absorption), als auch indirekt (Wolkenkondensationskeime). Das sekundäre organische Aerosol (SOA) bildet einen wichtigen Bestandteil des atmosphärischen Aerosols. Seine Bildung erfolgt durch Reaktionen von Kohlenwasserstoffen mit atmosphärischen Oxidationsmitteln (z.B. Ozon, OH-Radikalen). Eine Klasse dieser Kohlenwasserstoffe sind die Terpene. Sie werden in großen Mengen durch die Vegetation emittiert und gelten als wichtige Vorläufersubstanzen des biogenen SOAs. In den Reaktionen von Monoterpenen und Sesquiterpenen mit atmosphärischen Reaktionspartnern wird eine große Vielfalt an multifunktionellen Reaktionsprodukten gebildet, von denen bis heute nur ein Bruchteil identifiziert werden konnte. In der vorliegenden Arbeit soll im Speziellen die Bildung von organischen Peroxiden und oligomeren Verbindungen im biogenen SOA untersucht und Nachweise einzelner Moleküle erbracht werden.rnFür eine Identifizierung von organischen Peroxiden aus der Oxidation einzelner Monoterpene und Sesquiterpene mit Ozon wurden die Reaktionsprodukte direkt in eine bei Atmosphärendruck arbeitende chemische Ionisationsquelle überführt und massenspektrometrisch untersucht (online-APCI-MS). Hierdurch konnten organische Hydroperoxide in der Partikelphase nachgewiesen werden, welche sich durch eine signifikante Abspaltung von H2O2 im Tandem-Massenspektrum (MS/MS) auszeichneten. Des Weiteren sollte die Bildung von höhermolekularen Verbindungen („Dimere“) im SOA des α-Pinens untersucht werden. Hierfür wurden zunächst die Reaktionsprodukte des Cyclohexens, das als einfache Modellverbindung des α-Pinens dient, mittels online-APCI-MS und offline durch Flüssigkeitschromatographie und Elektrospray-Ionenfallenmassenspektrometrie (HPLC/ESI-MS) untersucht. Verschiedene Produkte der Cyclohexen-Ozonolyse konnten hierbei als Esterverbindungen identifiziert werden, wobei eigens synthetisierte Referenzsubstanzen für die Identifizierung verwendet wurden. In einem weiteren Experiment, indem gleichzeitig Cyclohexen und α-Pinen mit Ozon umgesetzt wurden, konnten ebenfalls eine Bildung von höhermolekularen Estern nachgewiesen werden. Es handelte sich hierbei um „Mischester“, deren Struktur aus Reaktionsprodukten der beiden VOC-Vorläufermoleküle aufgebaut war. Durch diese neuen Erkenntnisse, über die Bildung von Estern im SOA des Cyclohexens, wurden die Dimer-Bildung einer reinen α-Pinen/Ozon-Reaktion online und offline massenspektrometrisch untersucht. Hier stellten sich als Hauptprodukte die Verbindungen mit m/z 357 und m/z 367 ([M-H]--Ionen) heraus, welche zudem erstmals auf einem Filter einer Realprobe aus Hyytiälä, Finnland nachgewiesen werden konnten. Aufgrund ihrer Fragmentierung in MS/MS-Untersuchungen sowie den exakten Summenformeln aus FT-MS Messungen konnte für die Struktur der höhermolekularen Verbindung mit m/z 367 ebenfalls ein Ester und für m/z 357 ein Peroxyhemiacetal vorgeschlagen werden. Die vorgeschlagene Struktur der Verbindung m/z 367 konnte im Anschluss über eine Reaktion aus Hydroxypinonsäure mit Pinsäure bestätigt werden. Die Identifizierung der Esterverbindung des α-Pinen-SOA erfolgte ebenfalls mit Hilfe von LC-MSn-Messungen.rnDie bisher diskutierten Ergebnisse, sowie die meisten in der Literatur beschriebenen Studien befassen sich jedoch mit einzelnen Vorläuferverbindungen, im Gegensatz zu den komplexen SOA-Proben aus den Emissionen der Vegetation. Im Rahmen einer Messkampagne am Forschungszentrum Jülich erfolgte eine massenspektrometrische Charakterisierung (online-APCI-MS) des SOAs aus direkten VOC-Emissionen von Pflanzen. Durch einen Vergleich der Produktverteilung dieser erhalten online-Massenspektren mit denen aus den Reaktionen einzelner VOCs, konnten Aussagen über die in den Reaktionen umgesetzten VOCs gemacht werden. Es konnte gezeigt werden, dass in stressbedingten Situationen die untersuchten Exemplare der Betula pendula (Birke) hauptsächlich Sesquiterpene, Picea abies (Fichte) eher Monoterpene und Eucalyptus (Eukalyptus) sowohl Sesquiterpene als auch Monoterpene emittieren. Um die atmosphärischen Prozesse, die zur Bildung der Produkte im SOA führen vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.rn