4 resultados para Xenopus-oocytes

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZusammenfassungDer humane kationische Aminosäure-Transporter hCAT-1 (CAT für cationic amino acid transporter) gehört zur Familie der Na+- und pH-unabhängigen Transporter für basische Aminosäuren (BAS). Die vorliegende Arbeit befasst sich mit unterschiedlichen Aspekten des hCAT-1-vermittelten Transportes, die in zwei Teilabschnitten behandelt werden. Im ersten Abschnitt wurden die Transporteigenschaften von hCAT-1-exprimierenden X. laevis-Oozyten mit Hilfe von elektrophysiologischen Methoden untersucht und mit denen der Isoformen hCAT-2A und -2B verglichen. Dabei zeigte sich, dass es durch die Expression von hCAT-2A und -2B in Oozyten zur Bildung eines BAS-Potentiales kommt, jedoch nicht durch die Expression von hCAT-1. Hierfür dürfte die hohe Transstimulierbarkeit des hCAT-1-Proteins verantwortlich sein. Obwohl das Membranpotential einer Zelle die Akkumulation von BAS durch die hCAT-Proteine beeinflusst, war bei sehr hohen extrazellulären BAS-Konzentrationen die Akkumulation durch hCAT-1 und -2B im Gegensatz zu hCAT-2A nicht vom Membranpotential abhängig, da unter diesen Bedingungen der Efflux limitierend wirkte. Mit Hilfe der voltage clamp-Methode wurden die L-Arginin-induzierten Maximalströme (Vmax) und die Leitfähigkeiten der hCAT-Proteine bestimmt. Die so ermittelten Vmax-Werte sind nur halb so groß wie die durch Flux-Studien bestimmten. Daher muss von einem Gegentransport an positiver Ladung (Substrat) ausgegangen werden. Weiterhin konnte gezeigt werden, dass die hCAT-Isoformen zwei unterschiedliche Leitfähigkeitszustände für BAS besitzen, die von der intrazellulären BAS-Konzentration abhängig sind. Eine Leitfähigkeitszunahme durch Zugabe von extrazellulärem L-Arginin konnte bei allen hCAT-Isoformen in depletierten Oozyten beobachtet werden. In BAS-beladenen Oozyten führte die Zugabe von L-Arginin dagegen zu keiner (hCAT-1 und hCAT-2B) bzw. zu einer geringen (hCAT-2A) Zunahme der Leitfähigkeit der Transporter. Im Substratgleichgewicht jedoch nahm die Leitfähigkeit der drei untersuchten hCAT-Isoformen in Abhängigkeit von der Substratkonzentration zu. Überraschenderweise wurden für die untersuchten hCAT-Isoformen Leck-Ströme in Abwesenheit von BAS nachgewiesen. An hCAT-2B-exprimierenden Oozyten wurde eine erhöhte Leitfähigkeit für K+-Ionen gezeigt. Die physiologische Bedeutung dieser Kanalfunktion ist jedoch noch völlig ungeklärt. Im zweiten Abschnitt wurde der Mechanismus der Proteinkinase C (PKC)-vermittelten Inhibition der hCAT-1-Transportaktivität untersucht. Hierfür wurden hCAT-1.EGFP-Konstrukte in Oozyten und in U373MG Glioblastom-Zellen exprimiert. Mit Hilfe konfokaler Mikroskopie und Western-Blot-Analysen von biotinylierten Zelloberflächen-Proteinen wurde gezeigt, dass die PKC-vermittelte Reduktion der hCAT-1-Transportaktivität auf einer Reduktion der hCAT-Expression an der Zelloberfläche beruht. Ähnliche Ergebnisse wurden auch mit dem endogen in humanen DLD-1 Kolonkarzinom-Zellen exprimierten hCAT-1 erzielt. Der PKC-Effekt war auch noch nach Entfernung der putativen PKC-Erkennungsstellen am hCAT-1-Protein vorhanden. Daher reguliert die PKC die hCAT-1-Transportaktivität vermutlich über einen indirekten Mechanismus, d. h. nicht über eine direkte Phosphorylierung des hCAT-1-Proteins. Die Veränderung der Zelloberflächenexpression stellt einen neuen Regulationsmechanismus für die CAT-Proteine dar, der erklären kann, warum sich Modifikationen in der CAT-Proteinexpression oft nicht in entsprechenden Veränderungen der Transportaktivität widerspiegeln.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Dissertation beschäftigt sich mit dem Membrantransporter-vermittelten Export von asymmetrischem Dimethyl-L-Arginin (ADMA) aus der Endothelzelle. Da ADMA-Plasmakonzentrationen mit Erkrankungen wie koronaren Herzkrankheiten, Atherosklerose, Bluthochdruck und Endotheldysfunktion in Verbindung gebracht werden, ist ein effektiver ADMA-Export aus der Zelle heraus unabdingbar. Um den Mechanismus hierfür aufzuklären, wurden die immortalisierte Endothelzelllinie EA.hy926 und weitere primäre Endothelzellen (humane Umbilikalvenenendothelzellen und Endothelzellen der großen und kleinen Herzgefäße) auf die Expression basischer Aminosäuretransporter mittels einer qRT-PCR hin untersucht. Dabei zeigte sich, dass alle getesteten Endothelzellen die Aminosäuretransporter hCAT-1, y+LAT1 und y+LAT2 exprimierten. Basierend auf ADMA-Exportdaten, die mit entsprechenden Transporter-überexprimierenden Xenopus laevis-Oozyten gewonnen wurden, wurde festgestellt, dass alle drei Membrantransporter ADMA exportieren konnten. Der physiologisch wichtige Exportweg für intrazellulär anfallendes ADMA scheint dabei der via y+L zu sein, da es sich hierbei um einen aktiven Exportmechanismus handelt, der im Gegentransport von im humanen Plasma reichlich vorhandenen neutralen Aminosäuren und Natriumionen den nach innen gerichteten Natriumgradienten ausnutzt. Die Wichtigkeit des Membrantransportes für die Kontrolle intrazellulärer ADMA-Konzentrationen wurde in vitro durch Entzug von extrazellulären Austauschsubstraten und einer daraus resultierenden Blockade der Transportfunktion gezeigt. Hierbei wurde innerhalb von zwei Stunden ein 2,5-facher Anstieg der intrazellulären ADMA-Konzentration festgestellt, die bei Präsenz von Austauschsubstrat für die Transporter nicht auftrat. Die Relevanz der y+LATs für den ADMA-Export wurde durch Herunterregulation dieser Proteine mittels siRNA sichtbar: Unter diesen Bedingungen konnte ADMA auch in Anwesenheit von Austauschsubstrat für das System y+L weniger effektiv exportiert werden. Eine wichtige Aufgabe des humanen Endothels ist die Bildung bioaktiven Stickstoffmonoxids, das unter anderem eine Vasodilatation der Gefäße bewirkt. Für diese NO-Synthese wird L-Arginin als Substrat von der endothelialen NO-Synthase benötigt. ADMA stellt einen kompetitiven Inhibitor dar, dessen erhöhtes intrazelluläres Vorkommen möglicherweise hemmend auf die NO-Synthase wirken könnte. Es konnten hier allerdings keine Auswirkungen eines um das 4-fache gestiegenen, intrazellulären ADMA-Spiegels auf die Tätigkeit der endothelialen NO-Synthase festgestellt werden. Möglicherweise bedarf es eines noch weiter zu Gunsten des ADMAs verschobenen, intrazellulären L-Arginin:ADMA-Verhältnisses, um eine Hemmung der NO-Synthase festzustellen. Dies könnte bei einem pathologischen Transporterausfall eintreten, der intrazellulär permanent höhere ADMA-Konzentrationen zur Folge hätte. Des Weiteren hätte ein Anstieg der Arginasetätigkeit und damit einhergehend ein Substratdefizit für die NO-Synthase den gleichen Effekt. Der translationale Ansatz mit humanen peripheren mononukleären Blutzellen von Patienten aus der 2. Medizinischen Klinik zeigte die Tendenz einer Korrelation zwischen dem ADMA-Exportvermögen und der Endothelfunktion und brachte zudem die Erkenntnis eines individuell äußerst variablen ADMA-Exportvermögens zutage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Stamm der Apicomplexa ist eine artenreiche Gruppe, der einzellige, meist obligat intrazelluläre Parasiten angehören, darunter auch erstzunehmende Krankheitserreger wie Plasmodium sp. sowie tierpathogene Vertreter wie Eimeria sp. und Theileria sp. Eimeria sp. verursacht die Kokzidiose beim Huhn. Diese Krankheit bedingt weltweite Verluste in der Geflügelindustrie von etwa 3 Milliarden US$ pro Jahr [DALLOUL & LILLEHOJ, 2006; SHIRLEY et al., 2007; LUCIUS & LOOS-FRANK, 2008]. Die Parasiten weisen eine hohe Resistenzbildungsrate gegen vorhandene Wirkstoffe auf. Zudem ist der Einsatz von Vakzinen mit Nebenwirkungen verbunden und für hohe Produktionskosten verantwortlich. Daher ist die Entwicklung von neuen, kostengünstigen und effektiven Kokzidiostatika eine dringend notwendige Herausforderung [KINNAIRD et al., 2004]. rnAuf Grund ihrer essentiellen, regulatorischen Funktion im eukaryotischen Zellzyklus sind Zyklin-abhängige Kinasen (CDKs) validierte Zielproteine [LEHNINGER et al., 2005]. Auch Eimeria tenella CDC2-related kinase 2 (EtCRK2) wurde bereits mittels des bekannten CDK-Inhibitors Flavopiridol als Zielprotein chemisch validiert [ENGELS et al., 2010]. Wie bei allen CDKs ist die Aktivität von EtCRK2 abhängig von der Bindung eines Aktivators, der zur Zyklin-Proteinfamilie gehört. Dieser natürliche EtCRK2-Aktivator war jedoch bislang nicht bekannt. Deshalb war ein Teil dieser Arbeit die Identifizierung des natürlichen EtCRK2-Aktivators. Bioinformatische Analysen identifizierten vier E. tenella Zyklin-ähnliche Proteine (EtCYC1, EtCYC3a, EtCYC3b und EtCYC4), die nah verwandt zu den Plasmodium falciparum-Zyklinen sind [ENGELS et al., 2010; SUÁREZ FERNÁNDEZ et al., bislang unveröffentlichte Daten]. Im Rahmen dieser Arbeit konnten zwei neue Aktivatoren identifiziert und biochemisch charakterisiert werden: der bekannte CDK-Aktivator XlRINGO und das neue E. tenella-Zyklin EtCYC3a. Nachdem der nicht-radioaktive TR-FRET-Assay für die EtCRK2 etabliert und optimiert wurde, konnte die EtCRK2-Aktivität im Komplex mit beiden Aktivatoren und weitere wichtige kinetische Parameter bestimmt werden.rnZusätzlich wurde dieser Assay zum in vitro Screening einer kommerziellen Chemikalienbibliothek auf die EtCRK2 eingesetzt, um potentielle Inhibitoren für EtCRK2 zu identifizieren. Dieses in vitro Screening gefolgt von einer in silico Hit-Anreicherung identifizierte 19 aktive Verbindungen für die durch EtCYC3a und XlRINGO aktivierte EtCRK2. Zudem wurden drei Struktur-Cluster definiert: Naphthoquinone, 8-Hydroxyquinoline und 2-Pyrimidinyl-aminopiperidin-propan-2-ole. rnDie aktivsten Vertreter von jedem Cluster wurden als Leitstrukturen ausgewählt und auf EtCRK2 und HsCDK2 getestet. Aufgrund ihrer inhibierenden Wirkung auf EtCRK2 stellen diese Verbindungen viel versprechende Leitstrukturen für die Entwicklung eines neuen Antikokzidiums dar. Hiermit konnte auch gezeigt werden, dass BES124764, der Vertreter des 2-Pyrimidinyl-aminopiperidin-propan-2-ol-Clusters, in der Lage ist, die EtCRK2 selektiv zu inhibieren. rnDaher wird BES124764 sowie einige Derivate in den Leitstruktur-Optimierungsprozess für die Auffindung eines neuen Arzneimittelkandidaten gegen Kokzidiose eingehen.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.