8 resultados para Vibrations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Oktaedrisch koordinierte Übergangsmetalle mit der Elektronenkonfiguration [Ar]3d4 - 3d7 können in zwei unterschiedlichen elektronischen Zuständen existieren: im High-Spin (HS) oder im Low-Spin (LS) Zustand. Zum Beispiel kann Fe(II) in 1A1g (LS) oder 5T2g (HS) Konfiguration auftreten.Besonderes Interesse besteht in der Aufklärung des Mechanismus der kooperativen Wechselwirkung, die den Spinübergang im Festkörper bestimmt. Hierzu müssen zunächst die internen Freiheitsgrade der molekularen Einheiten bekannt sein. Besonders der Beitrag der molekularen Schwingungen zur Entropiedifferenz, die die Triebkraft des Spinübergangs darstellt, ist von entscheidender Bedeutung. Bisher existieren nur wenige detaillierte Untersuchungen zu den Schwingungseigenschaften der Spincrossovermoleküle.In Rahmen der vorliegenden Arbeit wurden die Schwingungseigenschaften einiger Komplexverbindungen, die Spincrossover zeigen, im Detail untersucht. Dazu wurden temperaturabhängige Raman-, Fern- und Mittel-Infrarot-Spektroskopie, Isotopensubstitution und Normalkoordinatenanalysen (NKA) in Verbindung mit Dichtefunktional-Rechnungen (DFT) verwendet.Die gewonnenen Werte der zugeordneten Schwingungsfrequenzen und die bestimmten Kraftkonstantenänderungen können nun zur Verfeinerung von theoretischen Modellen zur Beschreibung des Spinübergangs verwendet werden.
Resumo:
In dieser Arbeit werden nichtlineare Experimente zur Untersuchung der Dynamik in amorphen Festkörpern im Rahmen von Modellrechnungen diskutiert. Die Experimente beschäftigen sich mit der Frage nach dynamischen Heterogenitäten, worunter man das Vorliegen dynamischer Prozesse auf unterschiedlichen Zeitskalen versteht. Ist es möglich, gezielt 'langsame' oder 'schnelle' Dynamik in der Probe nachzuweisen, so ist die Existenz von dynamischen Heterogenitäten gezeigt. Ziel der Experimente sind deshalb sogenannte frequenzselektive Anregungen des Systems. In den beiden diskutierten Experimenten, zum einen nichtresonantes Lochbrennen, zum anderen ein ähnliches Experiment, das auf dem dynamischen Kerreffekt beruht, werden nichtlineare Antwortfunktionen gemessen. Um eine Probe in frequenzselektiver Weise anzuregen, werden zunächst einer oder mehrere Zyklen eines oszillierenden elektrischen Feldes an die Probe angelegt. Die Experimente werden zunächst im Terahertz-Bereich untersucht. Auf dieser Zeitskala findet man phonon-ähnliche kollektive Schwingungen in Gläsern. Diese Schwingungen werden durch (anharmonische) Brownsche Oszillatoren beschrieben. Der zentrale Befund der Modellrechnungen ist, daß eine frequenzselektive Anregung im Terahertz-Bereich möglich ist. Ein Nachweis dynamischer Heterogenitäten im Terahertz-Bereich ist somit durch beide Experimente möglich. Anschliessend wird das vorgestellte Kerreffekt-Experiment im Bereich wesentlich kleinerer Frequenzen diskutiert. Die langsame Reorientierungsdynamik in unterkühlten Flüssigkeiten wird dabei durch ein Rotationsdiffusionsmodell beschrieben. Es werden zum einen ein heterogenes und zum anderen ein homogenes Szenario zugrundegelegt. Es stellt sich heraus, daß wie beim Lochbrennen eine Unterscheidung durch das Experiment möglich ist. Das Kerreffekt-Experiment wird somit als eine relativ einfache Alternative zur Technik des nichtresonanten Lochbrennens vorgeschlagen.
Resumo:
Zusammenfassung Um photoschaltbare Gelbildner zu synthetisieren wurde auf bereits bekannte Gelbildner zurückgegriffen und eine Azobenzolgruppe, als photoschaltbare Einheit eingebaut. Die Modifizierung der Alkylsemicarbazide führte zu 7 Azosemicarbaziden (36-42), die alle gelbildende Eigenschaften haben. Die Gele des Alkylsemicarbazids 1 und der Azosemicarbazide 37 und 38 erwiesen sich als die stabilsten, weshalb an ihnen die meisten Untersuchungen durchgeführt wurden. Ihre Struktur ist in Abbildung 1 noch einmal aufgeführt. Die Alkylsemicarbazide vergelen Toluol, 1,2-Dichlorbenzol, Decalin, Tetralin und Cyclohexan. Die minimalen Gelbildnerkonzentration geht dabei von ~0,5 Gew.% für Toluol bis ~10 Gew.% für Tetralin und Cyclohexan. Die Azosemicarbazide 36-40 vergelen Toluol und Tetralin mit ~10 Gew.%, 1,2-Dichlorbenzol und Decalin mit ~4-7 Gew.Durch den Vergleich verschiedener Kristallstrukturen (von 1, 5, 19 und 43) und einer Röntgenkleinwinkelmessung eines Gels wurden zwei mögliche Kristallstrukturen für 37 vorgestellt. Die Tatsache, dass die IR-Spektren aller Semicarbazide im Bulk und als Gel sehr ähnliche Absorptionsbanden im Bereich der N-H-Schwingungen besitzen, zeigt, dass das vorgestellt Wasserstoffbrückenmotiv (Kapitel 4.1, Schema 4.1) für alle Semicarbazide nahezu gleich ist. Des Weiteren konnte ein Zusammenhang von der minimalen Gelbildner-konzentration, dem Schmelzpunkt und der Struktur des Gelnetz-werks gefunden werden. Je feiner das Netzwerk und damit je größer die Oberfläche, desto niedriger die minimale Gelbildnerkonzentration und desto niedriger der Schmelzpunkt der Gele. Gele mit Decalin fallen dabei durch eine andere Morphologie und besonders hohe Schmelzpunkte auf (Abbildung 2). Die Photoschaltbarkeit wurde im Gel mit organischen Lösungsmitteln und mit den Flüssigkristallmischungen durch UV/Vis-Messungen, Polarisationsmikroskopie, sowie durch die Bestimmung der Schaltzeiten und der Schwellspannung für LC II-Gele nachgewiesen. Erste dielektrische Messungen an einem LC II-Gel zeigen, dass die Goldstone-Mode im Gel unterdrück wird. Diese Ergebnisse sollen mit weiteren Untersuchungen untermauert werden.
Resumo:
In dieser Arbeit werden die mikroskopischen, chemischen und spektroskopischen Charakteristika von 260 natürlichen Smaragden und 66 synthetischen „Smaragden“ untersucht. Die Konzentrationen der chemischen Elemente von Smaragden wurden mit Hilfe der LA-ICP-MS und EMS bestimmt. Ergänzende Raman- und IR spektroskopische Methoden ermöglichen es, die Herkunft der verschiedenen Smaragde und ihrer synthetischen Analoga zu bestimmen. Auf Grund der verschiedenen Gehalte von Si, Al und Be können synthetische „Smaragde“ von natürlichen getrennt werden. Die Smaragde von Malipo, Chivor und auch synthetische „Smaragde“ können von allen anderen natürlichen Smaragden wegen der unterschiedlichen Cr-, V-, und Fe-Gehalte von einander getrennt werden. Wegen der unterschiedlichen Mg-, Na-, K-Gehalte lassen sich eher „schiefer-gebundene“ Smaragde identifizieren. Dabei wird festgestellt, dass die Unterscheidung in „schiefer-„ und „nichtschiefer-gebundene“ Smaragd-Vorkommen im Wesentlichen nur die Endglieder einer offensichtlich kristallchemisch sehr variablen Mineralchemie der Berylle, bzw. Smaragde beschreibt, dass damit aber keinesfalls eine petrologisch vertretbare Trennung belegbar ist, sondern dass Smaragde nur das jeweils regierende chemische Regime unter geeigneten Druck-Temperatur-Bedingungen widerspiegeln. Einschlussmerkmale spielen eine große Rolle bei der Unterscheidung verschiedener Lagerstätten und Herstellungsmethoden. Zum Beispiel können die Smaragde der drei Lagerstätten Santa Terezinha, Chivor, und Kafubu mit Hilfe ihrer charakteristischen Pyriteinschlüsse identifiziert werden. Die Band-Positionen und FWHM -Werte der Raman-Bande bei 1068 cm-1 und der IR-Bande bei 1200 cm-1 ermöglichen eine Differenzierung zwischen synthetischen und natürlichen Smaragden, und können darüber hinaus auch Auskunft geben über die Lagerstätte. Zusammen mit chemischen Messwerten kann bewiesen werden, dass diese Banden von Si-O Schwingungen verursacht werden. Die Raman- und IR-Banden im Bereich der Wasserschwingungen und insbesondere das IR-Band um 1140 cm-1 führen zur Trennung von Flux-Synthesen, Hydrothermal-Synthesen und natürlichen Smaragden.
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.
Resumo:
Within this work, a particle-polymer surface system is studied with respect to the particle-surface interactions. The latter are governed by micromechanics and are an important aspect for a wide range of industrial applications. Here, a new methodology is developed for understanding the adhesion process and measure the relevant forces, based on the quartz crystal microbalance, QCM. rnThe potential of the QCM technique for studying particle-surface interactions and reflect the adhesion process is evaluated by carrying out experiments with a custom-made setup, consisting of the QCM with a 160 nm thick film of polystyrene (PS) spin-coated onto the quartz and of glass particles, of different diameters (5-20µm), deposited onto the polymer surface. Shifts in the QCM resonance frequency are monitored as a function of the oscillation amplitude. The induced frequency shifts of the 3rd overtone are found to decrease or increase, depending on the particle-surface coupling type and the applied oscillation (frequency and amplitude). For strong coupling the 3rd harmonic decreased, corresponding to an “added mass” on the quartz surface. However, positive frequency shifts are observed in some cases and are attributed to weak-coupling between particle and surface. Higher overtones, i.e. the 5th and 7th, were utilized in order to derive additional information about the interactions taking place. For small particles, the shift for specific overtones can increase after annealing, while for large particle diameters annealing causes a negative frequency shift. The lower overtones correspond to a generally strong-coupling regime with mainly negative frequency shifts observed, while the 7th appears to be sensitive to the contact break-down and the recorded shifts are positive.rnDuring oscillation, the motion of the particles and the induced frequency shift of the QCM are governed by a balance between inertial forces and contact forces. The adherence of the particles can be increased by annealing the PS film at 150°C, which led to the formation of a PS meniscus. For the interpretation, the Hertz, Johnson-Kendall-Roberts, Derjaguin-Müller-Toporov and the Mindlin theory of partial slip are considered. The Mindlin approach is utilized to describe partial slip. When partial slip takes place induced by an oscillating load, a part of the contact ruptures. This results in a decrease of the effective contact stiffness. Additionally, there are long-term memory effects due to the consolidation which along with the QCM vibrations induce a coupling increase. However, the latter can also break the contact, lead to detachment and even surface damage and deformation due to inertia. For strong coupling the particles appear to move with the vibrations and simply act as added effective mass leading to a decrease of the resonance frequency, in agreement with the Sauerbrey equation that is commonly used to calculate the added mass on a QCM). When the system enters the weak-coupling regime the particles are not able to follow the fast movement of the QCM surface. Hence, they effectively act as adding a “spring” with an additional coupling constant and increase the resonance frequency. The frequency shift, however, is not a unique function of the coupling constant. Furthermore, the critical oscillation amplitude is determined, above which particle detach. No movement is detected at much lower amplitudes, while for intermediate values, lateral particle displacement is observed. rnIn order to validate the QCM results and study the particle effects on the surface, atomic force microscopy, AFM, is additionally utilized, to image surfaces and measure surface forces. By studying the surface of the polymer film after excitation and particle removal, AFM imaging helped in detecting three different meniscus types for the contact area: the “full contact”, the “asymmetrical” and a third one including a “homocentric smaller meniscus”. The different meniscus forms result in varying bond intensity between particles and polymer film, which could explain the deviation between number of particles per surface area measured by imaging and the values provided by the QCM - frequency shift analysis. The asymmetric and the homocentric contact types are suggested to be responsible for the positive frequency shifts observed for all three measured overtones, i.e. for the weak-coupling regime, while the “full contact” type resulted in a negative frequency shift, by effectively contributing to the mass increase of the quartz..rnThe interplay between inertia and contact forces for the particle-surface system leads to strong- or weak-coupling, with the particle affecting in three mentioned ways the polymer surface. This is manifested in the frequency shifts of the QCM system harmonics which are used to differentiate between the two interaction types and reflect the overall state of adhesion for particles of different size.rn
Resumo:
In this study more than 450 natural sapphire samples (most of basaltic type) collected from 19 different areas were examined. They are from Dak Nong, Dak Lak, Quy Chau, two unknown sources from the north (Vietnam); Bo Ploi, Khao Ploi Waen (Thailand); Ban Huay Sai (Laos); Australia; Shandong (China); Andapa, Antsirabe, Nosibe (Madagascar); Ballapana (Sri Lanka); Brazil; Russia; Colombia; Tansania and Malawi. rnThe samples were studied on internal characteristics, chemical compositions, Raman-, luminescence-, Fourier transform infrared (FTIR)-, and ultraviolet-visible-near infrared (UV-Vis-NIR)- spectroscopy. The internal features of these sapphire samples were observed and identified by gemological microscope, con focal micro Raman and FTIR spectroscopy. The major and minor elements of the samples were determined by electron probe microanalysis (EPMA) and the trace elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). rnThe structural spectra of sapphire were investigated by con focal Raman spectroscopy. The FTIR spectroscopy was used to study the vibration modes of OH-groups and also to determine hydrous mineral inclusions in sapphire. The UV-Vis-NIR absorption spectroscopy was used to analyze the cause of sapphire color. rnNatural sapphires contain many types of mineral inclusions. Typically, they are iron-containing inclusions like goethite, ilmenite, hematite, magnetite or silicate minerals commonly feldspar, and often observed in sapphires from Asia countries, like Dak Nong, Dak Lak in the south of Vietnam, Ban Huay Sai (Laos), Khao Ploi Waen and Bo Ploi (Thailand) or Shandong (China). Meanwhile, CO2-diaspore inclusions are normally found in sapphires from Tansania, Colombia, or the north of Vietnam like Quy Chau. rnIron is the most dominant element in sapphire, up to 1.95 wt.% Fe2O3 measured by EPMA and it affects spectral characteristics of sapphire.rnThe Raman spectra of sapphire contain seven peaks (2A1g + 5Eg). Two peaks at about 418.3 cm-1 and 577.7 cm-1 are influenced by high iron content. These two peaks shift towards smaller wavenumbers corresponding to increasing iron content. This shift is showed by two equations y(418.3)=418.29-0.53x andy(577.7)=577.96-0.75x, in which y is peak position (cm-1) and x is Fe2O3 content (wt.%). By exploiting two these equations one can estimate the Fe2O3 contents of sapphire or corundum by identifying the respective Raman peak positions. Determining the Fe2O3 content in sapphire can help to distinguish sapphires from different origins, e.g. magmatic and metamorphic sapphire. rnThe luminescence of sapphire is characterized by two R-lines: R1 at about 694 nm and R2 at about 692 nm. This characteristic is also influenced by high iron content. The peak positions of two R-lines shift towards to smaller wavelengths corresponding to increasing of iron content. This correlation is showed by two equations y(R_2 )=692.86-0.049x and y(R_1 )=694.29-0.047x, in which y is peak position (nm) of respective R-lines and x is Fe2O3 content (wt.%). Two these equations can be applied to estimate the Fe2O3 content of sapphire and help to separate sapphires from different origins. The luminescence is also applied for determination of the remnant pressure or stress around inclusions in Cr3+-containing corundum by calibrating a 0-pressure position in experimental techniques.rnThe infrared spectra show the presence of vibrations originating from OH-groups and hydrous mineral inclusions in the range of 2500-4000 cm-1. Iron has also an effect upon the main and strongest peak at about 3310 cm-1. The 3310 cm-1 peak is shifted to higher wavenumber when iron content increases. This relationship is expressed by the equation y(3310)=0.92x+3309.17, in which y is peak position of the 3310 cm-1 and x is Fe2O3 content (wt.%). Similar to the obtained results in Raman and luminescence spectra, this expression can be used to estimate the Fe2O3 content and separate sapphires from different origins. rnThe UV-Vis-NIR absorption spectra point out the strong and sharp peaks at about 377, 387, and 450 nm related to dispersed Fe3+, a broad band around 557 and 600 nm related to intervalence charge transfer (IVCT) Fe2+/Ti4+, and a broader band around 863 nm related to IVCT of Fe2+/Fe3+. rnGenerally, sapphires from different localities were completely investigated on internal features, chemical compounds, and solid spectral characteristics. The results in each part contribute for identifying the iron content and separate sapphires from different localities order origins. rn