6 resultados para Teorema Egregium de Gauss
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Coupled-Cluster-Berechnungen von Parametern derKernspin-Resonanz-Spektroskopie Dissertationsschrift von Alexander A.Auer, Mainz 2002 Im Rahmen einer Studie der Berechnung von 13C-Verschiebungenwerdendie Einfluesse von Elektronenkorrelation, Basissatz,Gleichgewichtsgeometrie sowie Schwingungs- und Rotationseffekten separat betrachtet.Dabei zeigt sich, dass dieCoupled-Cluster-Singles-Doubles-Methode mitstoerungstheoretischer Behandlung der Dreifachanregungen(CCSD(T)) mit entsprechend grossen Basissaetzen bei Beruecksichtigung derNullpunktsschwingungseffekte Ergebnisse mit ca. 1 ppm Abweichung zum Experiment liefert. Eine Analyse der Elektronenkorrelationseffekte beiCoupled-Cluster- (CC-) Berechnungen von indirekten Spin-Spin-Kopplungskonstanten zeigt, dassCC-Methoden mit Hartree-Fock-Orbitalrelaxation zur Berechnung derKopplungskonstanten ungeeignet sind. Eine Loesung ist die Verwendung unrelaxierter CC-Methoden,in denendie HF-Orbitalrelaxation aus der Berechnung der gestoertenWellenfunktion ausgeschlossen wird. Full-Configuration-Interaction-Berechnungen fuer Borhydridzeigen,dass auf CC-Singles-Doubles-Niveau (CCSD) 94% und aufCC-Singles-Doubles-Triples-Niveau (CCSDT) 99% der Korrelationseffekte beschrieben werden. Weiterhin istdie Beruecksichtigung der Nullpunktsschwingung sowie die Wahl eines ausreichend grossen Basissatzes wichtig. Auf Grundlage der vorangegangenen Studien werden im letztenTeil zwei Beispiele zur Anwendung hochgenauer Berechnungen vonNMR-Parametern vorgestellt.Im Rahmen einer Studie der Spin-Spin-Kopplungskonstanten vonCyclopentan wird eine Karplus-Beziehungzwischen den Kopplungskonstanten und der Konformation desMolekuels aufgestellt, desweiteren werden die NMR-Parameter von Methylidinphosphanuntersucht.
Resumo:
Spin-Restricted Coupled-Cluster-Theorie fuer offenschaligeZustaende Die Berechnung von Energien und Eigenschaften offenschaligerAtome undMolekuele mit Hilfe der hochgenauenCoupled-Cluster-(CC)-Theoriewar bisher mit einem - im Vergleich zur BerechnunggeschlossenschaligerZustaende - erhoehten Rechenaufwand und der sogenannten'Spinkontamination' behaftet. Um diesen Problemenentgegenzuwirken,stellten P.G.Szalay und J.Gauss die 'Spin-RestrictedCoupled-Cluster-Theorie' vor. Im Rahmen dieser Arbeit wird die urspruenglich aufDublett-Zustaendebeschraenkte Theorie so verallgemeinert, dass jederbeliebige Spinzustandmit einem einheitlichen Satz von Gleichungen beschriebenwerden kann. Dadie Moller-Plesset-(MP)-Stoerungstheorie bei der BerechnungoffenschaligerZustaende mit aehnlichen Problemen behaftet ist, wirddarueberhinaus dieSpin-Restricted-(SR)-MP-Stoerungstheorie zweiter und dritterOrdnungeingefuehrt. Um Molekueleigenschaften berechnen zu koennen,werdenanalytische Ableitungen der Energie sowohl fuer den SR-CC-als auch denSR-MP-Ansatz hergeleitet. Bei den folgenden Testrechnungenstellt sichheraus, dass sowohl SR-CC- als auch SR-MP-Ansaetze diegleiche Genauigkeitbieten wie konventionelle CC- und MP-Ansaetze. Dabei sinddieSpinerwartungswerte der SR-CC-Wellenfunktionen identisch mitdem exaktenWert. Im Rahmen der Testrechnungen stellt sich heraus, dassder SR-CC-Ansatz nicht 'size-konsistent', der numerische Fehler abervernachlaessigbar klein ist. Abschliessend werden dieHintergruende derfehlenden 'Size-Konsistenz' diskutiert.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.
Resumo:
Sei $\pi:X\rightarrow S$ eine \"uber $\Z$ definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul $M\subset H^3_{DR}(X/S)$ von Rang vier, sodass der Picard-Fuchs Operator $P$ auf $M$ ein sogenannter {\em Calabi-Yau } Operator von Ordnung vier ist. Sei $k$ ein endlicher K\"orper der Charaktetristik $p$, und sei $\pi_0:X_0\rightarrow S_0$ die Reduktion von $\pi$ \uber $k$. F\ur die gew\ohnlichen (ordinary) Fasern $X_{t_0}$ der Familie leiten wir eine explizite Formel zur Berechnung des charakteristischen Polynoms des Frobeniusendomorphismus, des {\em Frobeniuspolynoms}, auf dem korrespondierenden Untermodul $M_{cris}\subset H^3_{cris}(X_{t_0})$ her. Sei nun $f_0(z)$ die Potenzreihenl\osung der Differentialgleichung $Pf=0$ in einer Umgebung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in einem Teichm\uller-Punkt $t$ durch $f_0(z)/f_0(z^p)|_{z=t}$ gegeben ist, ist ein entscheidender Schritt in der Berechnung des Frobeniuspolynoms die Konstruktion einer $p-$adischen analytischen Fortsetzung des Quotienten $f_0(z)/f_0(z^p)$ auf den Rand des $p-$adischen Einheitskreises. Kann man die Koeffizienten von $f_0$ mithilfe der konstanten Terme in den Potenzen eines Laurent-Polynoms, dessen Newton-Polyeder den Ursprung als einzigen inneren Gitterpunkt enth\alt, ausdr\ucken,so beweisen wir gewisse Kongruenz-Eigenschaften unter den Koeffizienten von $f_0$. Diese sind entscheidend bei der Konstruktion der analytischen Fortsetzung. Enth\alt die Faser $X_{t_0}$ einen gew\ohnlichen Doppelpunkt, so erwarten wir im Grenz\ubergang, dass das Frobeniuspolynom in zwei Faktoren von Grad eins und einen Faktor von Grad zwei zerf\allt. Der Faktor von Grad zwei ist dabei durch einen Koeffizienten $a_p$ eindeutig bestimmt. Durchl\auft nun $p$ die Menge aller Primzahlen, so erwarten wir aufgrund des Modularit\atssatzes, dass es eine Modulform von Gewicht vier gibt, deren Koeffizienten durch die Koeffizienten $a_p$ gegeben sind. Diese Erwartung hat sich durch unsere umfangreichen Rechnungen best\atigt. Dar\uberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspolynoms her, in welchen auch die nicht-holomorphen L\osungen der Gleichung $Pf=0$ in einer Umgebung der Null eine Rolle spielen.
Resumo:
In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors. In these materials the weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities.rnThe contributions to the method development includern(i) the derivation of a bimolecular charge-transfer rate,rn(ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies,rn(iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energiesrnand (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies.These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED).rnWhen bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter.rnFurthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that a polarization-induced stabilization of a molecule in its charged and neutral states can lead to large shifts, broadening, and traps in the distribution of charge energies. These results are especially important for multi-component systems (the emission layer of an OLED or the donor-acceptor interface of an organic solar cell), if the change in polarizability upon charging (or excitation in case of energy transport) is different for the components. Thus, the polarizability change upon charging or excitation should be added to the set of molecular parameters essential for understanding charge and energy transport in organic semiconductors.rnWe also studied charge transport in self-assembled systems, where intermolecular packing motives induced by side chains can increase electronic couplings between molecules. This leads to larger charge mobility, which is essential to improve devices such as organic field effect transistors, where low carrier mobilities limit the switching frequency.rnHowever, it is not sufficient to match the average local molecular order induced by the sidernchains (such as the pitch angle between consecutive molecules in a discotic mesophase) with maxima of the electronic couplings.rnIt is also important to make the corresponding distributions as narrow as possible compared to the window determined by the closest minima of thernelectronic couplings. This is especially important in one-dimensional systems, where charge transport is limited by the smallest electronic couplings.rnThe immediate implication for compound design is that the side chains should assist the self-assemblingrnprocess not only via soft entropic interactions, but also via stronger specific interactions, such as hydrogen bonding.rnrnrnrn