4 resultados para Radio-frequency energy harvesting

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ziel dieser Arbeit ist die Bestimmung der Spinpolarisation von der Heusler-Verbindung Co2Cr0,6Fe0,4Al. Dieses Ziel wurde durch die sorgfältige Präparation von Co2Cr0,6Fe0,4Al basierten Tunnelkontakten realisiert. Tunnelwiderstandsmessungen an Co2Cr0,6Fe0,4Al-basiertenrnTunnelkontakten ergaben einen Tunnelmagnetowiderstand von 101% bei 4 K. DieserrnTunnelmagnetowiderstand legt eine untere Grenze von 67% für die Spinpolarisation von Co2Cr0,6Fe0,4Al fest.rnrnCo2Cr0,6Fe0,4Al ist eine Heusler-Verbindung, der die Eigenschaften eines halbmetallischen Ferromagneten zugeschrieben werden. Ein halbmetallischer Ferromagnet hat an der Fermikante nur Elektronenspinzustände mit einer Polarisation. Als Folge davon können bei einem spinerhaltenden Tunnelprozess nur Elektronen einer Spinrichtung in den halbmetallischen Ferromagneten tunneln. Mit einem magnetischen Feld und einer durch einen Antiferromagneten fixierten Gegenelektrode, können an einem Tunnelkontakt mit einem spinpolarisierten Ferromagneten deshalb zwei Zustände, eine hohe und eine niedrige Tunnelleitfähigkeit, erzeugt werden. Daher finden spinpolarisierte Tunnelkontakte in Form von MRAM in der Datenspeicherung Verwendung. Bislang wurde jedoch keine Verbindung gefunden, der eine Spinpolarisation von 100% experimentell eindeutig nachgewiesen werden konnte. Für Co2Cr0,6Fe0,4Al lagen die höchsten gemessenen Spinpolarisationen um 50%.rnrnTunnelspektroskopie ist eine zuverlässige und anwendungsnahe Methode zur Untersuchung der Spinpolarisation. Inelastische Tunnelprozesse und eine reduzierte Ordnung an Grenzflächen bewirken einen reduzierten Tunnelmagnetowiderstand. Eine symmetriebrechende Barriere, wie amorphes AlOx, ist Voraussetzung für die Anwendung des Jullière-Modells zur Bestimmung der Spinpolarisation. Das Jullière-Modell verknüpft die Spin-aufgespaltenenrnZustandsdichten der Elektroden mit dem Tunnelmagnetowiderstand. Ohne einernsymmetriebrechende Barriere, zum Beispiel mit MgO als Isolatorschicht, können höhere Tunnelmagnetowiderstände erzwungen werden. Ein eindeutiger Rückschluss auf die Spinpolarisation ist dann jedoch nicht mehr möglich. Mit Aluminiumoxid-basierten Barrieren liefert die Anwendung des einfachen Jullière-Modells eine Untergrenze der Spinpolarisation.rnrnUm die Spinpolarisation von Co2Cr0,6Fe0,4Al durch Tunnelspektroskopie zu bestimmen, musste die Präparation der Tunnelkontakte verbessert werden. Dies wurde ermöglicht durch den Anbau einer neuen Sputterkammer mit besseren UHV-Bedingungen an ein bestehendes Präparationscluster. Co2Cr0,6Fe0,4Al wird mit Hilfe von Radiofrequenz-Kathodenzerstäuben deponiert. Die resultierenden Schichten verfügen nach ihrer Deposition über einen höheren Ordnungsgrad und über eine geordnete Oberfläche. Durch eine Magnesium-Pufferschicht war es möglich, auf diese Oberfläche eine homogene amorphe AlOx-Barriere zu deponieren. Als Gegenelektrode wurde CoFe als Ferromagnet mit MnFe als Antiferromagnet gewählt. Diese Gegenelektrode ermöglicht Tunnelmessungen bis hin zu Raumtemperatur.rnrnMit den in dieser Arbeit vorgestellten optimierten Analyse- und Präparationsmethoden ist es möglich, die Untergrenze der Spinpolarisation von Co2Cr0,6Fe0,4Al auf 67% anzuheben. Dies ist der bisher höchste veröffentlichte Wert der Spinpolarisation von Co2Cr0,6Fe0,4Al.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we investigate mixtures of quantum degenerate Bose and Fermi gases of neutral atoms in threedimensional optical lattices. Feshbach resonances allow to control interspecies interactions in these systems precisely, by preparing suitable combinations of internal atomic states and applying external magnetic fields. This way, the system behaviour can be tuned continuously from mutual transparency to strongly interacting correlated phases, up to the stability boundary.rnThe starting point for these investigations is the spin-polarized fermionic band insulator. The properties of this non-interacting system are fully determined by the Pauli exclusion principle for the occupation of states in the lattice. A striking demonstration of the latter can be found in the antibunching of the density-density correlation of atoms released from the lattice. If bosonic atoms are added to this system, isolated heteronuclear molecules can be formed on the lattice sites via radio-frequency stimulation. The efficiency of this process hints at a modification of the atom number distribution over the lattice caused by interspecies interaction.rnIn the following, we investigate systems with tunable interspecies interaction. To this end, a method is developed which allows to assess the various contributions to the system Hamiltonian both qualitatively and quantitatively by following the quantum phase diffusion of the bosonic matter wave.rnBesides a modification of occupation number statistics, these measurements show a significant renormalization of the bosonic Hubbard parameters. The final part of the thesis considers the implications of this renormalization effect on the many particle physics in the mixture. Here, we demonstrate how the quantum phase transition from a bosonic superfluid to a Mott insulator state is shifted towards considerably shallower lattices due to renormalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wurden dünne Schichten von Heusler-Verbindungen hergestellt und auf ihre Transporteigenschaften hin untersucht.rnDer Anomale Hall-Effekt (AHE) ist dabei von besonderem Interesse. Er ist ein seit langer Zeit bekannter, jedoch noch nicht vollständig verstandener Transport-Effekt. Die meisten Veröffentlichungen theoretischer Arbeiten konzentrieren sich auf den Einfluss eines bestimmten Beitrags zum AHE. Tatsächlich gemessene experimentelle Daten können jedoch oft nicht in Einklang mit idealisierten Annahmen gebracht werden. rnDie vorliegende Arbeit diskutiert die Ergebnisse, welche aus Messungen von Materialien mit niedrigem Restwiderstand erhalten wurden. rnrnAls prototypische Materialien wurden hier hyphenation Heusler-Verbindungen untersucht. Als Material mit einer komplexen Topologie der Fermi-Fläche zeichnet sich dort der Einfluss von Defekten und der Unordnung der Kristallstruktur deutlich ab.rnrnDurch Verwendung von Filmen mit unterschiedlichem Grad der Unordnung können verschiedene Streumechanismen unterschieden werden. Für Co$_{2}$FeSi$_{0.6}$Al$_{0.4}$ and Co$_{2}$FeGa$_{0.5}$Ge$_{0.5}$ zeigt sich ein positiver AHE bei einer Unordnung vom Typ B2 und bei einer induzierten temperaturabh"angigen Streuung, wo hingegen eine Typ DO$_{3}$-Unordnung zusammen mit anderen möglichen intrinsischen Beiträgen einen negativen Effekt hervorruft.rnrnDarüber hinaus wurden die magneto-optische Kerr-Effekte (MOKE) dieser Verbindungen untersucht. Hierfür wurden Beiträge erster Ordnung als Funktion der intrinsischen und extrinsischen Parameter qualitativ analysiert. Auf den Einfluss der kristallinen Ordnung auf Beiträge zweiter Ordnung des MOKE-Signals wird ebenfalls eingegangen.rnrnDes Weiteren wurden dünne Schichten der Heusler-Verbindung Co$_{2}$MnAl auf MgO- und Si-Subs-traten (beide (100)) mit Hochfrequenz-Mag-netron-Sputtern erzeugt. Die zusammensetzung sowie die magnetischen und Transport-Eigenschaften wurden hinsichtlich unterschiedlicher Abscheidebedingungen systematisch untersucht.rnrnInsbesondere zeigt der AHE-Widerstand ein außerordentliches temperaturunabhängiges Verhalten in einem Bereich moderater Magnetfeldstärken von 0 bis 0.6,T. Hierf"ur wurde der nicht-diagonale Transport bei Temperaturen bis zu 300,$^{circ}$C analysiert. Die Daten zeigen die Eignung des Materials für Hall-Sensoren auch oberhalb der Raumtemperatur.rnrnJüngst wurde der Spin Seebeck-Effekt (SSE) entdeckt. Der Effekt aus dem Bereich der Spin-Kaloritronik erzeugt eine Spin-Spannung'' aufgrund eines Temperaturgradienten in magnetischen Materialien. Hier werden vorläufige Messungen des SSE in Ni$_{80}$Fe$_{20}$ und in Heusler-Verbindungen präsentiert.rn