14 resultados para Problem Behavior Theory
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A complete understanding of the glass transition isstill a challenging problem. Some researchers attributeit to the (hypothetical) occurrence of a static phasetransition, others emphasize the dynamical transitionof mode coupling-theory from an ergodic to a non ergodicstate. A class of disordered spin models has been foundwhich unifies both scenarios. One of these models isthe p-state infinite range Potts glass with p>4, whichexhibits in the thermodynamic limit both a dynamicalphase transition at a temperature T_D, and a static oneat T_0 < T_D. In this model every spins interacts withall the others, irrespective of distance. Interactionsare taken from a Gaussian distribution.In order to understand better its behavior forfinite number N of spins and the approach to thethermodynamic limit, we have performed extensive MonteCarlo simulations of the p=10 Potts glass up to N=2560.The time-dependent spin-autocorrelation function C(t)shows strong finite size effects and it does not showa plateau even for temperatures around the dynamicalcritical temperature T_D. We show that the N-andT-dependence of the relaxation time for T > T_D can beunderstood by means of a dynamical finite size scalingAnsatz.The behavior in the spin glass phase down to atemperature T=0.7 (about 60% of the transitiontemperature) is studied. Well equilibratedconfigurations are obtained with the paralleltempering method, which is also useful for properlyestablishing static properties, such as the orderparameter distribution function P(q). Evidence is givenfor the compatibility with a one step replica symmetrybreaking scenario. The study of the cumulants of theorder parameter does not permit a reliable estimation ofthe static transition temperature. The autocorrelationfunction at low T exhibits a two-step decay, and ascaling behavior typical of supercooled liquids, thetime-temperature superposition principle, is observed. Inthis region the dynamics is governed by Arrheniusrelaxations, with barriers growing like N^{1/2}.We analyzed the single spin dynamics down to temperaturesmuch lower than the dynamical transition temperature. We found strong dynamical heterogeneities, which explainthe non-exponential character of the spin autocorrelationfunction. The spins seem to relax according to dynamicalclusters. The model in three dimensions tends to acquireferromagnetic order for equal concentration of ferro-and antiferromagnetic bonds. The ordering has differentcharacteristics from the pure ferromagnet. The spinglass susceptibility behaves like chi_{SG} proportionalto 1/T in the region where a spin glass is predicted toexist in mean-field. Also the analysis of the cumulantsis consistent with the absence of spin glass orderingat finite temperature. The dynamics shows multi-scalerelaxations if a bimodal distribution of bonds isused. We propose to understand it with a model based onthe local spin configuration. This is consistent with theabsence of plateaus if Gaussian interactions are used.
Resumo:
In this thesis, atomistic simulations are performed to investigate hydrophobic solvation and hydrophobic interactions in cosolvent/water binary mixtures. Many cosolvent/water binary mixtures exhibit non-ideal behavior caused by aggregation at the molecular scale level although they are stable and homogenous at the macroscopic scale. Force-field based atomistic simulations provide routes to relate atomistic-scale structure and interactions to thermodynamic solution properties. The predicted solution properties are however sensitive to the parameters used to describe the molecular interactions. In this thesis, a force field for tertiary butanol (TBA) and water mixtures is parameterized by making use of the Kirkwood-Buff theory of solution. The new force field is capable of describing the alcohol-alcohol, water-water and alcohol-water clustering in the solution as well as the solution components’ chemical potential derivatives in agreement with experimental data. With the new force field, the preferential solvation and the solvation thermodynamics of a hydrophobic solute in TBA/water mixtures have been studied. First, methane solvation at various TBA/water concentrations is discussed in terms of solvation free energy-, enthalpy- and entropy- changes, which have been compared to experimental data. We observed that the methane solvation free energy varies smoothly with the alcohol/water composition while the solvation enthalpies and entropies vary nonmonotonically. The latter occurs due to structural solvent reorganization contributions which are not present in the free energy change due to exact enthalpy-entropy compensation. It is therefore concluded that the enthalpy and entropy of solvation provide more detailed information on the reorganization of solvent molecules around the inserted solute. Hydrophobic interactions in binary urea/water mixtures are next discussed. This system is particularly relevant in biology (protein folding/unfolding), however, changes in the hydrophobic interaction induced by urea molecules are not well understood. In this thesis, this interaction has been studied by calculating the free energy (potential of mean force), enthalpy and entropy changes as a function of the solute-solute distance in water and in aqueous urea (6.9 M) solution. In chapter 5, the potential of mean force in both solution systems is analyzed in terms of its enthalpic and entropic contributions. In particular, contributions of solvent reorganization in the enthalpy and entropy changes are studied separately to better understand what are the changes in interactions in the system that contribute to the free energy of association of the nonpolar solutes. We observe that in aqueous urea the association between nonpolar solutes remains thermodynamically favorable (i.e., as it is the case in pure water). This observation contrasts a long-standing belief that clusters of nonpolar molecules dissolve completely in the presence of urea molecules. The consequences of our observations for the stability of proteins in concentrated urea solutions are discussed in the chapter 6 of the thesis.
Resumo:
Biologische Membranen sind Fettmolekül-Doppelschichten, die sich wie zweidimensionale Flüssigkeiten verhalten. Die Energie einer solchen fluiden Oberfläche kann häufig mit Hilfe eines Hamiltonians beschrieben werden, der invariant unter Reparametrisierungen der Oberfläche ist und nur von ihrer Geometrie abhängt. Beiträge innerer Freiheitsgrade und der Umgebung können in den Formalismus mit einbezogen werden. Dieser Ansatz wird in der vorliegenden Arbeit dazu verwendet, die Mechanik fluider Membranen und ähnlicher Oberflächen zu untersuchen. Spannungen und Drehmomente in der Oberfläche lassen sich durch kovariante Tensoren ausdrücken. Diese können dann z. B. dazu verwendet werden, die Gleichgewichtsposition der Kontaktlinie zu bestimmen, an der sich zwei aneinander haftende Oberflächen voneinander trennen. Mit Ausnahme von Kapillarphänomenen ist die Oberflächenenergie nicht nur abhängig von Translationen der Kontaktlinie, sondern auch von Änderungen in der Steigung oder sogar Krümmung. Die sich ergebenden Randbedingungen entsprechen den Gleichgewichtsbedingungen an Kräfte und Drehmomente, falls sich die Kontaktlinie frei bewegen kann. Wenn eine der Oberflächen starr ist, muss die Variation lokal dieser Fläche folgen. Spannungen und Drehmomente tragen dann zu einer einzigen Gleichgewichtsbedingung bei; ihre Beiträge können nicht mehr einzeln identifiziert werden. Um quantitative Aussagen über das Verhalten einer fluiden Oberfläche zu machen, müssen ihre elastischen Eigenschaften bekannt sein. Der "Nanotrommel"-Versuchsaufbau ermöglicht es, Membraneigenschaften lokal zu untersuchen: Er besteht aus einer porenüberspannenden Membran, die während des Experiments durch die Spitze eines Rasterkraftmikroskops in die Pore gedrückt wird. Der lineare Verlauf der resultierenden Kraft-Abstands-Kurven kann mit Hilfe der in dieser Arbeit entwickelten Theorie reproduziert werden, wenn der Einfluss von Adhäsion zwischen Spitze und Membran vernachlässigt wird. Bezieht man diesen Effekt in die Rechnungen mit ein, ändert sich das Resultat erheblich: Kraft-Abstands-Kurven sind nicht länger linear, Hysterese und nichtverschwindende Trennkräfte treten auf. Die Voraussagen der Rechnungen könnten in zukünftigen Experimenten dazu verwendet werden, Parameter wie die Biegesteifigkeit der Membran mit einer Auflösung im Nanometerbereich zu bestimmen. Wenn die Materialeigenschaften bekannt sind, können Probleme der Membranmechanik genauer betrachtet werden. Oberflächenvermittelte Wechselwirkungen sind in diesem Zusammenhang ein interessantes Beispiel. Mit Hilfe des oben erwähnten Spannungstensors können analytische Ausdrücke für die krümmungsvermittelte Kraft zwischen zwei Teilchen, die z. B. Proteine repräsentieren, hergeleitet werden. Zusätzlich wird das Gleichgewicht der Kräfte und Drehmomente genutzt, um mehrere Bedingungen an die Geometrie der Membran abzuleiten. Für den Fall zweier unendlich langer Zylinder auf der Membran werden diese Bedingungen zusammen mit Profilberechnungen kombiniert, um quantitative Aussagen über die Wechselwirkung zu treffen. Theorie und Experiment stoßen an ihre Grenzen, wenn es darum geht, die Relevanz von krümmungsvermittelten Wechselwirkungen in der biologischen Zelle korrekt zu beurteilen. In einem solchen Fall bieten Computersimulationen einen alternativen Ansatz: Die hier präsentierten Simulationen sagen voraus, dass Proteine zusammenfinden und Membranbläschen (Vesikel) bilden können, sobald jedes der Proteine eine Mindestkrümmung in der Membran induziert. Der Radius der Vesikel hängt dabei stark von der lokal aufgeprägten Krümmung ab. Das Resultat der Simulationen wird in dieser Arbeit durch ein approximatives theoretisches Modell qualitativ bestätigt.
Resumo:
This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.
Resumo:
We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative L-infinity-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.
Resumo:
Die vorliegende Arbeit ist motiviert durch biologische Fragestellungen bezüglich des Verhaltens von Membranpotentialen in Neuronen. Ein vielfach betrachtetes Modell für spikende Neuronen ist das Folgende. Zwischen den Spikes verhält sich das Membranpotential wie ein Diffusionsprozess X der durch die SDGL dX_t= beta(X_t) dt+ sigma(X_t) dB_t gegeben ist, wobei (B_t) eine Standard-Brown'sche Bewegung bezeichnet. Spikes erklärt man wie folgt. Sobald das Potential X eine gewisse Exzitationsschwelle S überschreitet entsteht ein Spike. Danach wird das Potential wieder auf einen bestimmten Wert x_0 zurückgesetzt. In Anwendungen ist es manchmal möglich, einen Diffusionsprozess X zwischen den Spikes zu beobachten und die Koeffizienten der SDGL beta() und sigma() zu schätzen. Dennoch ist es nötig, die Schwellen x_0 und S zu bestimmen um das Modell festzulegen. Eine Möglichkeit, dieses Problem anzugehen, ist x_0 und S als Parameter eines statistischen Modells aufzufassen und diese zu schätzen. In der vorliegenden Arbeit werden vier verschiedene Fälle diskutiert, in denen wir jeweils annehmen, dass das Membranpotential X zwischen den Spikes eine Brown'sche Bewegung mit Drift, eine geometrische Brown'sche Bewegung, ein Ornstein-Uhlenbeck Prozess oder ein Cox-Ingersoll-Ross Prozess ist. Darüber hinaus beobachten wir die Zeiten zwischen aufeinander folgenden Spikes, die wir als iid Treffzeiten der Schwelle S von X gestartet in x_0 auffassen. Die ersten beiden Fälle ähneln sich sehr und man kann jeweils den Maximum-Likelihood-Schätzer explizit angeben. Darüber hinaus wird, unter Verwendung der LAN-Theorie, die Optimalität dieser Schätzer gezeigt. In den Fällen OU- und CIR-Prozess wählen wir eine Minimum-Distanz-Methode, die auf dem Vergleich von empirischer und wahrer Laplace-Transformation bezüglich einer Hilbertraumnorm beruht. Wir werden beweisen, dass alle Schätzer stark konsistent und asymptotisch normalverteilt sind. Im letzten Kapitel werden wir die Effizienz der Minimum-Distanz-Schätzer anhand simulierter Daten überprüfen. Ferner, werden Anwendungen auf reale Datensätze und deren Resultate ausführlich diskutiert.
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
rnThis thesis is on the flavor problem of Randall Sundrum modelsrnand their strongly coupled dual theories. These models are particularly wellrnmotivated extensions of the Standard Model, because they simultaneously address rntherngauge hierarchy problem and the hierarchies in the quarkrnmasses and mixings. In order to put this into context, special attention is given to concepts underlying therntheories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). ThernAdS/CFTrnduality is introduced and its implications for the Randall Sundrum model withrnfermions in the bulk andrngeneral bulk gauge groups is investigated. It will be shown that the differentrnterms in the general 5D propagator of a bulk gauge field can be related tornthe corresponding diagrams of the strongly coupled dual, which allows for arndeeperrnunderstanding of the origin of flavor changing neutral currents generated by thernexchange of the Kaluza Klein excitations of these bulk fields.rnIn the numerical analysis, different observables which are sensitive torncorrections from therntree-levelrnexchange of these resonances will be presented on the basis of updatedrnexperimental data from the Tevatron and LHC experiments. This includesrnelectroweak precision observables, namely corrections to the S and Trnparameters followed by corrections to the Zbb vertex, flavor changingrnobservables with flavor changes at one vertex, viz. BR (Bd -> mu+mu-) and BR (Bs -> mu+mu-), and two vertices,rn viz. S_psiphi and |eps_K|, as well as bounds from direct detectionrnexperiments. rnThe analysis will show that all of these bounds can be brought in agreement withrna new physics scale Lambda_NP in the TeV range, except for the CPrnviolating quantity |eps_K|, which requires Lambda_NP= Ord(10) TeVrnin the absencernof fine-tuning. The numerous modifications of the Randall Sundrum modelrnin the literature, which try to attenuate this bound are reviewed andrncategorized.rnrnSubsequently, a novel solution to this flavor problem, based on an extendedrncolor gauge group in the bulk and its thorough implementation inrnthe RS model, will be presented, as well as an analysis of the observablesrnmentioned above in the extended model. This solution is especially motivatedrnfromrnthe point of view of the strongly coupled dual theory and the implications forrnstrongly coupled models of new physics, which do not possess a holographic dual,rnare examined.rnFinally, the top quark plays a special role in models with a geometric explanation ofrnflavor hierarchies and the predictions in the Randall-Sundrum model with andrnwithout the proposed extension for the forward-backward asymmetryrnA_FB^trnin top pair production are computed.
Resumo:
In my dissertation I investigated the influence of behavioral variation between and within ant colonies on group performance. In particular, I analyzed how evolution shapes behavior in response to ecological conditions, and whether within-group diversity improves productivity as suggested by theory. Our field and laboratory experiments showed that behavioral diverse groups are more productive. Different aggression levels within colonies were beneficial under competitive field situations, whereas diversity in brood care and exploratory behavior were favored in non-competitive laboratory situations. We then examined whether population density and social parasite presence shape aggression through phenotypic plasticity and/or natural selection. The importance of selection was indicated by the absence of density or parasite effects on aggression in a field manipulation. Indeed, more aggressive colonies fared better under high density and during parasite attack. When analyzing the proximate causes of individual behavioral variation, ovarian development was shown to be linked to division of labor and aggressiveness. Finally, our studies show that differences in the collective behavior can be linked to immune defense and productivity. My dissertation demonstrates that behavioral variation should be studied on multiple scales and when possible combined with physiological analyses to better understand the evolution of animal personalities in social groups.rn
Resumo:
Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.
Resumo:
Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Resumo:
Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene