14 resultados para Peptide secondary structure
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Dissertation wurden verschiedene Kandidatengene für den Wilmstumor (WT), eine Tumorerkrankung der Niere, identifiziert und charakterisiert. Da dieses frühkindliche Malignom aus einer inkorrekt ablaufenden Metanephrogenese resultiert, wurden die Genexpressionsmuster verschiedener humaner Wilmstumor- und Normalnierengewebe (adulte sowie fetale Niere) mit Hilfe der Technik des differential display verglichen und die als differenziell exprimiert identifizierten Gene kloniert und charakterisiert. Bei TM7SF1 handelt es sich um ein neues Gen, dessen Transkription im Zuge der Metanephrogenese angeschaltet wird. Das von ihm codierte putative Protein kann aufgrund von Strukturvorhersagen vermutlich zur Familie G Protein-gekoppelter Rezeptoren gezählt werden. Die ableitbare Funktion als Signalmolekül der Nierenentwicklung, sowie seine Lokalisation in einem WT-Lokus (1q42-q43) machen TM7SF1 zu einem aussichtsreichen Kandidatengen für den WT. Darüber hinaus konnten die Voraussetzungen für funktionelle Tests, die eine weitere Charakterisierung von TM7SF1 erlauben, geschaffen werden (Identifikation und Klonierung des murinen Homologen, stabil überexprimierende WT-Zelllinien, Antikörper gegen den Aminoterminus des putativen Proteins). Mit TCF2 wurde ein weiteres Gen identifiziert, dessen Produkt in Prozessen der Metanephrogenese eine Rolle spielt. Die signifikante Herunterregulation der TCF2-Expression in der großen Mehrzahl der untersuchten WTs, die innerhalb der vorliegenden Arbeit gezeigte Regulation durch das WT1-Genprodukt, sowie seine genomische Lokalisation in einem Intervall für die familiäre Form des WT (FWT1 in 17q12-q21) zeigen das Potenzial von TCF2, als Kandidatengen für den FWT zu gelten. Darüber hinaus wurde mit GLI3 ein in verschiedenen WTs stark exprimiertes Gen identifiziert. Sein Produkt ist eine Komponente des entwicklungsbiologisch relevanten und in verschiedene Tumorerkrankungen involvierten sonic hedgehog-Signaltransduktionsweges. Mit FE7A3 und CDT151 konnten zwei differenziell exprimierte cDNAs identifiziert werden, die Teile neuer Gene darstellen und die in WT-Loci kartiert werden konnten. Aufgrund von Homologievergleichen im Bereich der identifizierten offenen Leserahmen konnte eine mögliche Bedeutung der putativen Genprodukte für die WT-Pathogenese als Zelladhäsionsmolekül (FE7A3) bzw. als mit der Proliferation assoziiertem Transkriptionsfaktor (CDT151) herausgearbeitet werden. Neben den komparativen Genexpressionsuntersuchungen wurde in einem zweiten Ansatz die transkriptionelle Regulation des einzigen bisher klonierten Wilmstumorgens (WT1) analysiert. Mit Hilfe vergleichender Reportergenanalysen in WT1-exprimierenden und nicht-exprimierenden Zelllinien konnten neue für die transkriptionelle Regulation von WT1 relevante Bereiche identifiziert werden. Darüber hinaus wurde der für die Transkriptionsfaktoren SP1 und SP3 an anderen Promotoren beschriebene funktionelle Antagonismus für die WT1-Expression untersucht und in Gelretardationsanalysen mit dem WT1-Expressionsstatus oben genannter Zelllinien korreliert.
Resumo:
Über die Biogenese des Lichtsammelkomplexes des Photosystems II höherer Pflanzen (LHCII) in der Thylakoidmembran der Chloroplasten existieren wenige Daten. Deswegen soll die Aufklärung des Faltungsmechanismus in vitro anhand von zeitaufgelösten Messungen der Rückfaltung des Komplexes Rückschlüsse auf die Situation in vivo ermöglichen.Zur Beobachtung der Rückfaltung wurden Methoden der Fluoreszenz- und CD-Spektroskopie verwendet. Die Pigmentbindung und die Ausbildung von α-helikaler Sekundärstruktur erfolgt in einem schnelleren und einem langsameren apparenten Schritt (Sekunden und Minuten); beide Vorgänge sind eng gekoppelt und limitiert durch die Bindung der Carotinoide. In der schnelleren Phase ist die Bindung von Chl a und Lutein ausreichend für die Zunahme an α-helikaler Struktur. Ein thermodynamisch stabiler Komplex erfordert die Bindung von Chl b und Carotinoiden. In der schnellen Phase bindet Chl a vor Chl b und Lutein mindestens so schnell wie Chl b; beide Pigmente limitieren die Bindung von Chl b. Chl b ist notwendig für die Ereignisse der langsameren Phase.Bzgl. der Situation in vivo deuten die Daten auf (1) eine aktive Rolle der Pigmentbindung für die Membraninsertion des Proteins, (2) einen Schutz vor Photooxidation der Chlorophylle durch die obligatorische Carotinoidbindung und (3) die Möglichkeit der Umsetzung von LHCII-gebundem Chl a zu Chl b.
Resumo:
In der vorliegenden Arbeit werden drei Polyelektrolyt-Architekturen zunehmender Verzweigung auf der Basis von L-Lysin vorgestellt. Zunächst wird auf das Aggregationsverhalten des linearen Blockpolyelektrolyten Polystyrol-b-Poly(L-Lysin) eingegangen. Dabei wird der Einfluss der Lysinblocklänge (NLys = 10…70) bei gleich bleibendem, sehr kurzem hydrophobem Polystyrolsegment untersucht. Wie sich der Polystyrolblock auf die Helixbildung auswirkt, kann mit Hilfe von Zirkulardichroismus nachgewiesen werden. Nach Bestimmung der kritischen Mizellenkonzentration über Fluoreszenzspektroskopie wird mittels statischer Streumethoden (SLS, SANS) eine zylinderförmige Mizelle mit einem Kernradius von 4,4 nm charakterisiert. Im zweiten Abschnitt werden die optischen Eigenschaften von sternförmigen, rot fluoreszierenden Perylendiimid-Poly(L-lysin)-Konjugaten mit variierender Armzahl (n = 4, 8, 16) und Kettenlänge (NLys = 10, 50, 100) beschrieben. Die guten Absorptionseigenschaften und schlechten Fluoreszenzeigenschaften zeigen weder eine Abhängigkeit von der Sekundärstruktur der Poly(L-lysin)-Arme noch von deren Zahl oder Kettenlänge. Der dritte Teil der Arbeit handelt von amin- (Fmoc-, TFAA- oder Z-) geschützten L-Lysindendrone bis zur dritten Generation, welche durch Verknüpfung der Carboxylfunktion der Dendrone mit der Amingruppe von Vinylbenzylamin in Makromonomere überführt werden. Das Polymerisationsverhalten der Makromonomere wird in Abhängigkeit der Dendrongeneration und der Monomerkonzentration zu Beginn der Polymerisation untersucht. Anhand von AFM-Aufnahmen kann nachgewiesen werden, dass das Polystyrolrückgrat der dendronisierten Polymere der ersten Z-geschützten Generation eine Streckung erfährt.
Resumo:
Escherichia coli kann C4-Dicarboxylate und andere Carbonsäuren als Substrate für den aeroben und anaeroben Stoffwechsel nutzen. Die Anwesenheit von C4-Dicarboxylaten im Außenmedium wird über das Zweikomponentensystem DcuSR, bestehend aus der membranständigen Sensorkinase DcuS und dem cytoplasmatischen Responseregulator DcuR, erkannt. Die Bindung von C4-Dicarboxylaten an die periplasmatische Domäne von DcuS führt zu einer Induktion der Zielgene. Hierzu zählen die Gene für den anaeroben Fumarat/Succinat-Antiporter DcuB (dcuB), die anaerobe Fumarase (fumB) und die Fumaratreduktase (frdABCD). Unter aeroben Bedingungen stimuliert DcuSR die Expression des dctA Gens, das für den aeroben C4-Dicarboxylat-Carrier DctA kodiert. Für den Carrier DcuB konnte eine regulatorische Funktion bei der Expression der DcuSR-regulierten Gene gezeigt werden. Die Inaktivierung des dcuB Gens führte bereits ohne Fumarat zu einer maximalen Expression einer dcuB´-´lacZ Reportergenfusion und anderer DcuSR-abhängiger Gene. Diese Stimulierung erfolgte nur in einem dcuS-positiven Hintergrund. DcuB unterscheidet sich damit von den alternativen Carriern DcuA und DcuC, die diesen Effekt nicht zeigten. Mithilfe ungerichteter Mutagenese wurden DcuB-Punktmutanten hergestellt (Thr394Ile und Asp398Asn), die eine Geninduktion verursachten, aber eine intakte Transportfunktion besaßen. Dies zeigt, dass der regulatorische Effekt von DcuB unabhängig von dessen Transportfunktion ist. Durch gerichtete Mutagenese wurde die Funktion einer Punktmutation (Thr394) näher charakterisiert. Es werden zwei Modelle zur Membrantopologie von DcuB und der Lage der Punktmutationen im Protein vorgestellt. Da DcuB seine regulatorische Funktion über eine Interaktion mit DcuS vermitteln könnte, wurden mögliche Wechselwirkungen zwischen DcuB und DcuS als auch DcuR mithilfe von Two-Hybrid-Systemen untersucht. Für biochemische Untersuchungen von DcuB wurde außerdem die Expression des Proteins in vivo und in vitro versucht. Unter aeroben Bedingungen beeinflusst der C4-Dicarboxylat-Carrier DctA die Expression der DcuSR-abhängigen Gene. Eine Mutation des dctA Gens bewirkte eine stärkere Expression einer dctA´-´lacZ Reportergenfusion im Vergleich zum Wildtyp. Diese Expression nahm in einem dcuS-negativen Hintergrund ab, die Succinat-abhängige Induktion blieb jedoch erhalten. Unter anaeroben Bedingungen kann das dctA Gen auch durch Inaktivierung von DcuB induziert werden. Es wird ein Modell vorgestellt, das die Beteiligung beider Carrier an der DcuSR-abhängigen Regulation erklärt.
Resumo:
Arthropodenhämocyanine und Molluskenhämocyanine, die extrazellulären Atmungsproteine der Arthropoden und Mollusken, unterscheiden sich grundsätzlich im Aufbau, besitzen aber ähnliche aktive Zentren, welche in ihrer oxydierten Form für die Blaufärbung der Hämocyanine verantwortlich sind. Sauerstoff wird im Bindungszentrum zwischen zwei, von sechs Histidinen ligandierten, Kupfer(I)Ionen gebunden. Arthropodenhämocyanine bauen sich artspezifisch aus 1, 2, 4, 6, oder 8 Hexameren mit D3-Symmetrie auf. Die Untereinheiten von je ca. 75 kDa falten sich in drei Domänen unterschiedlicher Funktionen. Der komplexe, hierarchische Zusammenbau der Arthropodenhämocyanine hängt von der Heterogenität der Untereinheiten ab. Die 7 verschieden Sequenzen des 4x6-Hämocyanins von Eurypelma californicum (EcHc) sind biochemisch in der Quartärstruktur lokalisiert. Bislang fehlte noch ein unabhängig erstelltes 3D-Modell der geometrischen Gesamtstruktur welche die hexamere und monomere Topographie eindeutig zeigt. Dessen Erstellung war Gegenstand dieser Arbeit, in Verbindung mit der Zielsetzung, die 3D-Rekonstruktion in den beiden extremen physiologischen Zuständen, mit und ohne gebundenen Sauerstoff, zu erzeugen. Dazu wurden in einer eigens entwickelten Atmosphären-Präparationskammer die Proteine in Lösung schockgefrorenen und mittels Cryo-3D-Elektronenmikroskopie gemessen. Aus den daraus gewonnen Projektionsbildern ließen sich mit der ”Single Particle Analyse“ die 3D-Informationen zurückberechnen. Die 3D-Rekonstruktionen wurden mit der publizierten Röntgenkristallstruktur des hexameren Referenz-Hämocyanins der Languste Panulirus interruptus verifiziert. Die Rekonstruktionen erlaubten die eindeutige Messung diverser in der Literatur diskutierter Parameter der Architektur des 4x6-EcHc und darüber hinaus weiterer geometrischer Parameter, welche hier erstmals veröffentlicht werden. SAXS-Daten sagen extreme Translationen und Rotationen von Teilquartärstrukturen zwischen oxy- und deoxy-EcHc voraus, was von den 3D-Rekonstruktionen der beiden Zustände nicht bestätigt werden konnte: Die 16 Å Rekonstruktion der Deoxyform weicht geometrisch nicht von der 21 Å Rekonstruktion der Oxyform ab. Die Einpassung der publizierten Röntgenstruktur der Untereinheit II des Hämocyanin des Pfeilschwanzkrebses Limulus polyphemus in die Rekonstruktionen unterstützt eine auf der hexameren Hierarchieebene lokalisierte Dynamik der Oxygenierung. Mittels Einpassung modellierter molekularer Strukturen der EcHc-Sequenzen konnte eine erste Vermutung zur Lokalisation der beiden zentralen Linker-Untereinheiten b und c des 4x6-Moleküls gemacht werden: Demnach würde Untereinheit b in den exponierten Hexameren des Moleküls liegen. Aussagen über die Quartärstrukturbindungen auf molekularer Ebene aufgrund der Einpassung modellierter molekularer Daten in die Rekonstruktionen sind als spekulativ einzustufen: a) Die Auflösung der Rekonstruktion ist verbesserungswürdig. b) Es gibt keine adäquate Vorlage für eine verlässliche Strukturvorhersage; die verschiedenen EcHc-Sequenzen liegen nur als Modellierung vor. c) Es wäre eine flexible Einpassung notwendig, um Ungenauigkeiten in den modellierten Strukturen durch Sekundärstrukturanpassung zu minimieren.
Resumo:
Ziel der Arbeit war die enzymatische Aktivierung von Cheliceraten-Hämocyanin zur Erforschung ihrer Phenoloxidase-Aktivität. Hierzu wurden zwei Hämocyanine in vergleichenden Untersuchungen herangezogen: Das bekannte 24-mer aus der Spinne Eurypelma californicum und das ebenfalls 24-mere Hämocyanin des Skorpions Pandinus imperator, dessen Struktur hier aufgeklärt wurde. Elektronenmikroskopisch und in der dynamischer Lichtstreuung sind sich beide Hämocyanine sehr ähnlich und sedimentieren bei analytischer Ultrazentrifugation ebenfalls in gleicher Weise (Sedimentationskoeffizient von 37 S (S20, W)). Durch Dissoziation im alkalischen Milieu gewinnt man bis zu zwölf Untereinheiten, von denen sich neun immunologisch unterscheiden lassen. Das absorptionsspektroskopische Verhalten von P. imperator- und E. californicum-Hämocyanin sowie Sekundärstrukturanalyse mittels CD-Spektroskopie ist nahezu identisch. Die Stabilität des Hämocyanins gegenüber Temperatur und Denaturierungsmitteln wurde mit Circulardichroismus- und Fluoreszenzspektroskopie sowie durch die enzymatische Aktivität untersucht. Erstmals konnten die Hämocyanine von P. imperator und E. californicum nicht nur zu einer stabilen Diphenoloxidase umgewandelt werden, sondern auch eine Monophenolhydroxylase-Aktivität induziert und reguliert werden. Für letztere Aktivität ist dabei die Präsenz von Tris- oder Hepes-Puffer wesentlich. Während sich die Monophenolhydroxylase-Aktivität nur auf Ebene der oligomeren Zustände beobachten lässt, erkennt man bei den isolierten Untereinheiten-Typen lediglich eine Diphenoloxidase-Aktivität. Bei dem Spinnen-Hämocyanin zeigen die Untereinheiten bc die stärkste katalytische Aktivität auf, bei P. imperator-Hämocyanin findet man drei bis vier Untereinheiten, die enzymatisch aktiv sind. Die Aktivierung mit SDS liefert den Hinweis, dass die Quartärstruktur in eine andere Konformation gebracht und nicht durch SDS denaturiert wird. Zugabe von Mg2+ reguliert die Phenoloxidase-Aktivität und verschiebt bei P. imperator-Hämocyanin die enzymatische Aktivität zugunsten der Diphenoloxidase. Mit keiner der zur Verfügung stehenden Methoden konnte jedoch ein Konformationsübergang eindeutig nachgewiesen werden. Die Stabilität scheint durch die niedrigen SDS-Konzentrationen nicht beeinträchtigt zu werden. Die sehr lange “Verzögerungsphase“ bei der Monophenolhydroxylase-Aktivität konnte durch Zugabe von katalytischem Diphenol drastisch verkürzt werden, was ein Hinweis auf die echte Tyrosinase-Aktivität des aktivierten Hämocyanins ist. Ein in vivo-Aktivator konnte bis jetzt noch nicht gefunden werden. Trotzdem scheinen die Hämocyanine in der Immunologie von Cheliceraten eine bedeutende Rolle zu spielen, indem sie die Rolle der Tyrosinasen / Phenoloxidasen beziehungsweise Catecholoxidasen übernehmen, die bei Cheliceraten nicht vorkommen. Weitere Möglichkeiten des Cheliceraten-Immunsystems, eindringende Fremdorganismen abzuwehren, wurden untersucht. Das Fehlen einer ´echten` Phenoloxidase-Aktivität bei den Cheliceraten, mit der Fähigkeit, sowohl mono- als auch diphenolische Substrate umzusetzen, stützt die Hypothese, dass aktiviertes Hämocyanin in vivo an die Stelle der Phenoloxidase tritt.
Resumo:
Abstract Poly(L-glutamic acid) (PLGA) was synthesized by living anionic ring-opening polymerization of the NCA monomer, which was obtained by reacting diphosgene with an amino acid derivative. The chemical structures and thermal properties were characterized by 1H-NMR, 13C-NMR, TGA and DSC. XRD powder patterns found to be amorphous for all polymers obtained. The molecular weights could be determined under severe limitations due to low solubility and high aggregation tendency. The secondary structure of the PLGA films was analyzed in the solid state by IR spectroscopy; the order was determined mainly by XRD. Uniform bulk films (1-5 µm) were produced by drop-casting of PLGA solutions in TFA on silica. The XRD film analysis indicated the absence of a long range order or an orientation even if a helical microstructure was confirmed by IR spectroscopy. The coil solvent TFA delivered constantly a helical or a β-sheet structure in the solid state depending on the water content of the solvent which was observed for the first time to exhibit a high influence on the crystallization process for PLGA. Temperature dependent in-situ IR measurements were examined to analyze if a helix-coil transition occurs, but there could be no solvent system determined, which resulted in a disordered coil structure in the solid state. General parameters like solvent systems, evaporation conditions, concentration, substrates etc. were analyzed. New crystallizations were obtained on silica prepared by drop-casting of solutions of PLGA in DMF, DMA, TMU, NMP, and pyridine/water mixtures, respectively. PSCBC in DMF, CDCl3/TFA-d, and PSBC in CDCl3/TFA-d exhibited the same crystalline diffraction patterns like PLGA. The long range order in the X-ray diffraction pattern is proven by extremely sharp crystalline signals, which are not changing the shape or the position of the peak by increasing the temperature up to 160°C. The substrate seems to play a decisive role because the crystalline structures were not obtainable on glass. The crystal structure consists probably of two different layered structures based on the intensity ratios of the two series of crystalline signals in the X-ray diffraction patterns. The source of the layered structure remains unclear and needs further studies to investigate the spatial arrangement of the chains in more detail. The secondary structure was still not changing upon heating even if a highly crystalline diffraction pattern occurs. Concluding that even the newly investigated crystallization did not show a helix-coil transition in the solid state by annealing, the phenomenon known in solution has to be claimed as unachievable in the solid state based on the results of this work. A remaining open question represents the observation that the same crystalline pattern can be reproducibly prepared with exhibiting two different ordered secondary structures (helix and β-sheet). After the investigation that the evaporation time cannot be decisive for the crystal growth, the choice of a strong hydrogen bonding interrupting solvent is most probably the key to support and induce the crystallization process.
The C-4-Dicarboxylate carriers DcuB and DctA of Escherichia coli: function as cosensors and topology
Resumo:
Das fakultativ anaerobe Enterobakterium Escherichia coli nutzt C4-Dicarboxylate sowohl unter aeroben als auch anaeroben Bedingungen als Kohlenstoff- und Energiequelle. Die Aufnahme der C4-Dicarboxylaten und die Energiekonservierung mittels Fumaratatmung wird durch das Zweikomponentensystem DcuSR reguliert. Die Sensorhistidinkinase DcuS und der nachgeschaltete Responseregulator DcuR aktivieren bei Verfügbarkeit von C4-Dicarboxylaten die Expression der Gene für den Succinat Transporter DctA, den anaeroben Fumarat/Succinat Antiporter DcuB, die Fumarase B sowie die Fumaratreduktase FrdABCD. Die Transportproteine DctA und DcuB wiederum regulieren die Expression der DcuSR-abhängigen Gene negativ. Fehlen von DctA oder DcuB resultiert bereits ohne Effektor in einer maximalen Expression von dctA bzw. dcuB. Durch gerichtete und ungerichtete Mutagenese wurde gezeigt, dass die Transportfunktion des Carriers DcuB unabhängig von seiner regulatorischen Funktion ist. DcuB kann daher als Cosensor des DcuSR Systems angesehen werden.rnUnter Verwendung von Reportergenfusionen von C-terminal verkürzten Konstrukten von DcuB mit der Alkalischen Phosphatase und der β-Galactosidase wurde die Topologie des Multitransmembranproteins DcuB bestimmt. Zusätzlich wurde die Zugänglichkeit bestimmter Aminosäurereste durch chemische Modifikation mit membran-durchlässigen und membran-undurchlässigen Thiolreagenzien untersucht. Die erhaltenen Ergebnisse deuten auf die Existenz eines tief in die Membran reichenden, hydrophilen Kanal hin, welcher zum Periplasma hin geöffnet ist. Mit Hilfe der Topologie-Studien, des Hydropathie-Blots und der Sekundärstruktur-Vorhersage wurde ein Modell des Carriers erstellt. DcuB besitzt kurze, periplasmatisch liegende Proteinenden, die durch 12 Transmembranhelices und zwei große hydrophile Schleifen jeweils zwischen TM VII/VIII und TM XI/XII verbunden sind. Die regulatorisch relevanten Reste K353, T396 und D398 befinden sich innerhalb von TM XI sowie auf der angrenzenden cytoplasmatischen Schleife XI-XII. Unter Berücksichtigung der strukturellen und funktionellen Aspekte wurde ein Regulationsmodell erstellt, welches die gemeinsam durch DcuB und DcuS kontrollierte C4-Dicarboxylat-abhängige Genexpression darstellt. rnDer Effekt von DctA und DcuSR auf die Expression einer dctA´-´lacZ Reportergenfusion und auf die aerobe C4-Dicarboxylat-Aufnahme wurde untersucht. In-vivo FRET-Messungen weisen auf eine direkte Wechselwirkung zwischen dem Carrier DctA und dem Sensor DcuS hin. Dieses Ergebnis stützt die Theorie der Regulation von DcuS durch C4-Dicarboxylate und durch die Cosensoren DctA bzw. DcuB mittels direkter Protein-Protein Interaktion.rn
Resumo:
Zu den Liganden des Zelloberflächenrezeptors RAGE gehören AGEs, S100-Proteine, HMGB1 und Aβ. RAGE wird daher eine Rolle bei verschiedenen neurologischen Erkrankungen sowie Diabetes, Arteriosklerose und Krebs zugesprochen. Des Weiteren geht eine Verringerung der Menge an sRAGE häufig mit diesen Krankheiten einher. Aus diesen Gründen stellt die pharmakologische Stimulierung der Proteolyse von RAGE eine vielversprechende Therapieform dar. Im Rahmen dieser Arbeit konnte gezeigt werden, dass eine Steigerung der sRAGE-Bildung über PAC1-, V2- und OT-Rezeptoren möglich ist. Die Untersuchung der PAC1-Signalwege zeigte, dass PKCα/PKCβI, CaMKII, Ca2+-Ionen, PI3-Kinase und der MAP-Kinase-Weg wichtig für die Stimulierung sind und dass der PKA-Weg nicht beteiligt ist. Die dreimonatige Behandlung von Mäusen mit PACAP-38 weist darauf hin, dass eine Stimulierung des Ectodomain Sheddings von RAGE auch in vivo erfolgen kann. Die Untersuchung der Signalwege, ausgehend von den V2- und OT-Rezeptoren, zeigte, dass ebenfalls PKCα/PKCβI, CaMKII, Ca2+-Ionen zur Aktivierung der Proteasen führen, dagegen konnte weder ein Einfluss des PKA- noch des MAP-Kinase-Weges festgestellt werden. Außerdem wurden sowohl MMP-9 als auch ADAM-10 als RAGE-spaltende Proteasen identifiziert. Die nähere Untersuchung der RAGE-Spaltstelle erbrachte, dass keine spezifische Sequenz, sondern vielmehr die Sekundärstruktur eine Rolle bei der Erkennung durch die Proteasen spielt. Im Rahmen der vorliegenden Arbeit wurde weiterhin ein anti-RAGE Antikörper anhand einer neu entwickelten Methode zunächst gereinigt und dann erfolgreich an ein mit dem Fluoreszenzfarbstoff Rhodamin markiertes Polymer gekoppelt. Die Stimulierung der Proteolyse von Meprin β wurde auch untersucht und es konnte ebenfalls eine Beteiligung von ADAM-10 an der Spaltung nachgewiesen werden.
Resumo:
Die Erkrankung Amyotrophe Lateralsklerose (ALS) ist gekennzeichnet durch eine progressive Degeneration der Motoneurone. Die hierdurch im Patienten hervorgerufene fortschreitende Paralyse kann von wenigen Wochen über Monate bis zu mehreren Jahren variieren. Im Durchschnitt beträgt die Krankheitsdauer 3 - 5 Jahre. Häufig führt respiratorische Insuffizienz letztendlich zum Tod des Patienten. ALS ist bis heute unheilbar. Etwa 10 % aller ALS Fälle zeigen einen familiären Hintergrund. Hiervon werden ~20 % durch Mutationen im Gen des antioxidativen Enzyms CuZnSuperoxiddismutase (SOD1) verursacht. Mehr als 150 Mutationen im Gen der SOD1 wurden bisher als Auslöser der ALS beschrieben. Durch die Mutation erlangen SOD1 Proteine zusätzliche, bisher jedoch unbekannte toxische Eigenschaften. Ein dismutaseaktives SOD1 Enzym setzt sich aus zwei SOD1 Untereinheiten zusammen. Aufgrund der autosomal dominanten Vererbung der Krankheit kann ein SOD1 Dimer im Patienten als wildtypisches Homodimer (SOD1WT‑WT), als mutantes Homodimer (SOD1mut‑mut) oder als Heterodimer (SOD1mut-WT) vorliegen. In dieser Arbeit wurden SOD1 Dimere untersucht, deren Untereinheiten kovalent miteinander verbunden waren. Es konnte gezeigt werden, dass sich die biochemischen und biophysikalischen Eigenschaften mutanter SOD1 Heterodimere von mutanten SOD1 Homodimeren mit der gleichen Mutation unterschieden. Mutante SOD1 Heterodimere wiesen eine höhere Resistenz gegen einen Abbau durch Proteinase K auf als ihre korrespondierenden Homodimere. Des Weiteren verminderte eine wildtypische Untereinheit die Interaktion der Heterodimere mit Antikörpern gegen fehlgefaltete SOD1. Die Sekundärstruktur der mutanten SOD1 Heterodimere unterschied sich hierbei nicht auffällig von der Sekundärstruktur ihrer zugehörigen Homodimere. Eine wildtypische Untereinheit verändert somit möglicherweise die Tertiärstruktur seiner kovalent gebundenen mutanten SOD1 Untereinheit und/oder die Konformation des gesamten Dimerproteins. Durch die Mutation bedingte Missfaltungen werden hierdurch reduziert, die Stabilität des Dimers gegenüber proteolytischem Abbau erhöht. Nach der Aufreinigung der Dimerproteine wies das mutanten SOD1 Heterodimer diese Eigenschaften nicht mehr auf. Ein potentieller Interaktionspartner, der eine verminderte Fehlfaltung des Heterodimers oder eine verstärkte Missfaltung des Homodimers fördert, könnte hierbei während der Aufreinigungsprozedur verlorengegangen sein. Die hier nachgewiesene Konformationsänderung könnte über einen Prionen-ähnlichen Effekt übertragen werden und die erhöhte Stabilität das mutante, toxische Protein vor Degradation schützen. Dies korreliert mit der Beobachtung früherer Studien, in denen nachgewiesen wurde, dass mutante SOD1 Heterodimere potentiell toxischer sind als ihre korrespondierenden Homodimere.
Resumo:
Ein discoidales Lipoprotein aus dem Polychaeten Nereis virens (Annelida) wurde eingehend charakterisiert. Im Vordergrund standen dabei die transportierten Lipide, sowie die Ultrastruktur des Partikels. Das Nereis-Lipoprotein besitzt eine für Invertebraten atypische Lipidzusammensetzung: Außer den Phospholipiden gibt es keine klar dominierende Lipidklasse. Die Charakterisierung der Apolipoproteine zeigt Gemeinsamkeiten mit den Apolipophorinen der Insekten: Wie diese besitzt das Nereis-Lipoprotein zwei Apolipoproteine, die in einer 1:1-Stöchiometrie angeordnet sind. Das größere Protein (ApoNvLp I) ist dabei stärker zum wässrigen Medium exponiert ist als das kleinere (ApoNvLp II). Beide Proteinuntereinheiten sind N-glycosyliert. ApoNvLp II ist zusätzlich noch O-glycosyliert. Bei den Sekundärstrukturen dominieren β-Strukturen (35%) gegenüber α-Helices (14%); 28% waren ungeordnete Strukturen. Die Masse wurde mit verschiedenen Methoden bestimmt: sie liegt zwischen ~800 kDa (Gelfiltration) und ~860 kDa (Analytische Ultrazentrifugation). Der Sedimentationskoeffizient beträgt 9,7 S. Der zelluläre Lipoproteinrezeptor wurde aus einer großen Anzahl von Zellen und Geweben isoliert. Die biochemische Charakterisierung des Rezeptormoleküls zeigte es als ein monomeres, integrales, N- und O-glycosyliertes Membranprotein mit einer Masse von ~114 kDa. Die Bindungscharakteristika (Abhängigkeit von Ca2+, Disulfidbrücken) weisen es als Mitglied der LDLR-Superfamilie aus. In vitro-Inkubationsversuche mit fluoreszenzmarkierten Lipoproteinen zeigten die Aufnahme sowohl in Oocyten als auch in freie Coelomzellen (Elaeocyten) sowie in Spermatogonien- und Tetradenstadien. Auffällig war, dass die Lipide zusammen mit den Apolipoproteinen in die Dottergranula der Eizellen eingelagert wurden und nicht direkt in die Lipidtropfen. Auch bei den Elaeocyten wurden die Lipide nicht direkt in den Lipidtropfen eingelagert. Intakte Lipoproteine konnten per Dichtegradienten-Ultrazentrifugation nur aus Spermatogonien isoliert werden. Die isolierten Lipoproteine hatten die gleiche ‚Morphologie’ wie die aus der Coelomflüssigkeit isolierten, zeigten jedoch sehr viele Peptidfragmente im SDS-Gel, was auf eine beginnende Degradation hinweist. Es wird ein Modell für den Lipidtransport in Nereis virens vorgeschlagen, bei dem den Elaeocyten eine entscheidende Rolle im Lipidstoffwechsel zufällt.
Resumo:
In dieser Arbeit wird ein vergröbertes (engl. coarse-grained, CG) Simulationsmodell für Peptide in wässriger Lösung entwickelt. In einem CG Verfahren reduziert man die Anzahl der Freiheitsgrade des Systems, so dass manrngrössere Systeme auf längeren Zeitskalen untersuchen kann. Die Wechselwirkungspotentiale des CG Modells sind so aufgebaut, dass die Peptid Konformationen eines höher aufgelösten (atomistischen) Modells reproduziert werden.rnIn dieser Arbeit wird der Einfluss unterschiedlicher bindender Wechsel-rnwirkungspotentiale in der CG Simulation untersucht, insbesondere daraufhin,rnin wie weit das Konformationsgleichgewicht der atomistischen Simulation reproduziert werden kann. Im CG Verfahren verliert man per Konstruktionrnmikroskopische strukturelle Details des Peptids, zum Beispiel, Korrelationen zwischen Freiheitsgraden entlang der Peptidkette. In der Dissertationrnwird gezeigt, dass diese “verlorenen” Eigenschaften in einem Rückabbildungsverfahren wiederhergestellt werden können, in dem die atomistischen Freiheitsgrade wieder in die CG-Strukturen eingefügt werden. Dies gelingt, solange die Konformationen des CG Modells grundsätzlich gut mit der atomistischen Ebene übereinstimmen. Die erwähnten Korrelationen spielen einerngrosse Rolle bei der Bildung von Sekundärstrukturen und sind somit vonrnentscheidender Bedeutung für ein realistisches Ensemble von Peptidkonformationen. Es wird gezeigt, dass für eine gute Übereinstimmung zwischen CG und atomistischen Kettenkonformationen spezielle bindende Wechselwirkungen wie zum Beispiel 1-5 Bindungs- und 1,3,5-Winkelpotentiale erforderlich sind. Die intramolekularen Parameter (d.h. Bindungen, Winkel, Torsionen), die für kurze Oligopeptide parametrisiert wurden, sind übertragbarrnauf längere Peptidsequenzen. Allerdings können diese gebundenen Wechselwirkungen nur in Kombination mit solchen nichtbindenden Wechselwirkungspotentialen kombiniert werden, die bei der Parametrisierung verwendet werden, sind also zum Beispiel nicht ohne weiteres mit einem andere Wasser-Modell kombinierbar. Da die Energielandschaft in CG-Simulationen glatter ist als im atomistischen Modell, gibt es eine Beschleunigung in der Dynamik. Diese Beschleunigung ist unterschiedlich für verschiedene dynamische Prozesse, zum Beispiel für verschiedene Arten von Bewegungen (Rotation und Translation). Dies ist ein wichtiger Aspekt bei der Untersuchung der Kinetik von Strukturbildungsprozessen, zum Beispiel Peptid Aggregation.rn
Resumo:
Wie alle Eukaryoten besitzen auch höhere Pflanzen ein mikrotubuläres Cytoskelett. Einige Funktionen dieses Cytoskeletts sind relativ stark konserviert, andere dagegen scheinen sehr pflanzenspezifisch zu sein. Dies betrifft insbesondere charakteristische mikrotubuläre Netzwerke, die bei der Neubildung und der Verstärkung der Zellwände wichtige Rollen übernehmen. Wie der Aufbau dieser Netzwerke kontrolliert wird, ist bisher relativ unklar. Typische Mikrotubuli organisierende Zentren (MTOC), insbesondere Centrosomen oder Spindelpolkörper, sind bei höheren Pflanzen nicht beobachtet worden. Von pilzlichen und tierischen Organismen weiß man, dass gamma-Tubulin (gTUB) mit seinen assoziierten Proteinen in den MTOC bei der Nukleation von Mikrotubuli eine Schlüsselfunktion hat. Dieses Mitglied der Tubulin-Superfamilie wird aber auch in Pflanzen gefunden, dessen genaue Funktion bisher unbekannt ist. Zu Beginn der Arbeit wurden mittels in silico Berechnungen Strukturmodelle des pflanzlichen gTUBs aus Nicotiana tabacum erarbeitet, da die Struktur, die zu einem Verständnis der pflanzlichen Wachstumsregulation beitragen könnte, bisher unbekannt ist. Auf Grundlage der bioinformatischen Daten konnte für weitere Studien eine notwendige gTUB-Deletionsmutante entwickelt werden. Für Röntgendiffraktionsstudien und gTUB-Interaktionspartneranalysen war die Verfügbarkeit verhältnismäßig großer Proteinmengen notwendig. Die Expression der gTUB-Volllängensequenz in gelöster und aktiver Form stellte einen immanent wichtigen Zwischenschritt dar. Das Escherichia coli T7/lacO-Expressionssystem lieferte, trotz vielversprechender Erfolge in der Vergangenheit, kein gelöstes rekombinantes gTUB. So wurden zwar verhältnismäßig hohe Expressionsraten erzielt, aber das rekombinante gTUB lag quantitativ als Inclusion bodies vor. Eine Variationen der Expressionsparameter sowie umfangreiche Versuche mittels verschiedenster Konstrukte sowie potentiell die Löslichkeit erhöhenden Tags gTUB in gelöster Form in E. coli zu exprimieren blieben erfolglos. Eine Denaturierung der Inclusion bodies und Rückfaltung wurde aufgrund der wohl bei der Tubulinfaltung notwendigen komplexeren Chaperone sowie thermodynamischer Überlegungen ausgeschlossen. Die höher evolvierte Chaperonausstattung war ein Hauptgrund für die Verwendung der eukaryotischen Hefe-Expressionssysteme K. lactis und des S. cerevisiae-Stammes FGY217 zur gTUB-Expression. So konnten nach der Selektion nur transgene Hefe-Zellen dokumentiert werden, die die gTUB-Expressionskassette nachweislich an der vorgesehenen Zielposition in ihrem Genom integrierten, aber keine dokumentierbare Expression zeigten. Die wahrscheinlichste Begründung hierfür ist, dass ein erhöhter intrazellulärer gTUB-Titer mit dem Zellwachstum und der Zellteilung dieser eukaryotischen Organismen interferierte und durch Rückkopplungen die rekombinante gTUB-CDS aus N. tabacum ausgeschaltet wurde. Der Versuch einer transienten gTUB-Überexpression in differenzierten Blattgeweben höherer Pflanzen war eine logische Konsequenz aus den vorherigen Ergebnissen und lieferte, wenn auch nicht die für eine Proteinkristallisation notwendigen Mengen, gelöstes gTUB. Bestrebungen einer stabilen Transfektion von A. thaliana oder BY-2-Zellkulturen mit einer gTUB-CDS lieferten keine transgenen Organismen, was starke Interferenzen der rekombinanten gTUB-CDS in den Zellen vermuten lies. Transfektionsversuche mit nur GFP tragenden Konstrukten ergaben hingegen eine hohe Anzahl an transgenen Organismen, die auch verhältnismäßig starke Expressionsraten zeigten. Die erzielten Proteinmengen bei der transienten gTUB-Überexpression in N. benthamiana Blattgeweben, in Co-Expression mit dem Posttransriptional Gene Silencing-Suppressorprotein p19, waren für einen Pull-Down sowie eine massenspektroskopische Analyse der Interaktionspartner ausreichend und ergaben Befunde. Eine abschließende Auswertung des erarbeiteten massenspektroskopischen Datensatzes wird jedoch erst dann möglich sein, wenn das Tabak-Proteom vollständig sequenziert ist. Die Erweiterung der bestehenden pflanzlichen Vergleichsdatenbanken um das bisher bekannte Tabak-Proteom vervielfachte die Anzahl der in dieser Studie identifizierten gTUB-Interaktionspartner. Interaktionen mit dem TCP1-Chaperon untermauern die Hypothese der zur Faltung pflanzlichen gTUBs notwendigen Chaperone. Beobachtete gTUB-Degradationsmuster in Verbindung mit Interaktionen des 26S-Proteasoms deuten auf eine Gegenregulationen bei erhöhtem gTUB-Titer auf Proteinebene hin. Da Blattgewebe selbst nur noch über eine sehr geringe und inhomogene Teilungsaktivität verfügen ist diese Regulation hoch spannend. Auch konnte durch Co-Expression des PTGS-Suppressorproteins p19 gezeigt werden, dass bei der gTUB-Expression eine Regulation auf RNA-Ebene erfolgt.
Resumo:
Der Suche nach neuen Wirkstoffen für den chemischen Pflanzenschutz kommt insbesondere vor dem Hintergrund der steigenden Weltbevölkerung und weniger zur Verfügung stehenden kulturfähigen Ackerflächen eine stetig wachsende Bedeutung zu. Ziel dieser Arbeit war die Synthese von cyclischen Peptiden und Depsipeptiden, die aufgrund ihrer biologischen Aktivität als potentielle Insektizide für den chemischen Pflanzenschutz in Frage kommen. Darüber hinaus sollten von Kohlenhydraten abgeleitete Katalysatoren zur enantioselektiven Cyanhydrinsynthese entwickelt werden, um einen leichten Zugang zu den Bausteinen der Depsipeptide zu ermöglichen. Als vielversprechender Naturstoff mit insektiziden Eigenschaften gilt das cyclische Pentapeptid Cycloaspeptid E, dessen Totalsynthese in 10 Stufen mit einer Gesamtausbeute von 25% erreicht wurde, sodass die Verbindung für biologische Tests bereitgestellt werden konnte. Zusätzlich gelang die Kristallisation der Verbindung, was eine Röntgenstrukturanalyse ermöglichte. Ein Derivat von Cycloaspeptid E sollte 2-Aminonicotinsäure anstelle von Anthranilsäure enthalten. Die Synthese dieser Verbindung wurde auf drei Wegen versucht. Dabei zeigte sich, dass es bei einer zur Totalsynthese des Naturstoffs analogen Strategie zur quantitativen Bildung eines Diketopiperazins kommt. Auf den anderen Routen ließ sich entweder ein Kupplungsschritt nicht realisieren, oder die Verbindung erwies sich unter den gewählten Bedingungen als instabil. Die Darstellung eines 2-Aminonicotinsäure-Derivats von Cycloaspeptid E bleibt daher weiterhin ein ungelöstes Problem, das weiterer Forschung bedarf. Verticilid A1 ist ein cyclisches Depsipeptid, das aufgrund seiner Bindungsfähigkeit an den Ryanodinrezeptor von Insekten, als Leitstruktur für die Suche nach neuen Insektiziden von Interesse ist. Um zu untersuchen, wie wichtig die Esterbindungen im Molekül für die biologische Aktivität sind, sollte das entsprechende Amid-Derivat und das Cyclodepsipeptid mit nur zwei statt vier Esterbindungen hergestellt werden. Hierbei zeigte sich, dass eine zur Darstellung von Verticilid A1 analoge Syntheseroute zu einer ausgeprägten Epimerisierung führt. Eine lineare Synthese der Derivate endet in der Bildung des Diketopiperazins. Weiterhin wurden zwei neue, zueinander pseudoenantiomere Vanadium(IV)-Katalysatoren auf Basis von D-Glucose einerseits und L-Xylose andererseits dargestellt. Diese lassen sich in fünf bzw. 14 Stufen synthetisieren und liefern in der enantioselektiven Katalyse von Mandelsäurenitril Enantiomerenüberschüsse von 89% bzw. 91% bei hohen Ausbeuten. Zusammenfassend lässt sich feststellen, dass im Rahmen dieser Arbeit die Totalsynthese von Cycloaspeptid E erfolgreich durchgeführt wurde, und die Syntheseversuche von weiteren cyclischen Peptiden wichtige Erkenntnisse für weitere Synthesen lieferten. Mit den beiden hergestellten Vanadium(IV)-Komplexen wurden zwei potente, auf Kohlenhydraten basierende Katalysatoren für die enantioselektive Synthese von Cyanhydrinen entwickelt.