11 resultados para Kenmotsu Manifold
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Wir berechnen die Eulerzahl der 10-dimensionalen exzeptionellen irreduziblen symplektischen Mannigfaltigkeit, die von O Grady konstruiert wurde. Die Idee besteht darin, zunächst eine Lagrangefaserung zu konstruieren und dann die Eulerzahlen der Fasern zu berechnen. Es stellt sich heraus, dass fast alle Fasern die Eulerzahl 0 haben, und deswegen reduziert sich das Problem auf die Berechnung der Eulerzahlen der übrigen Fasern. Diese Fasern sind Modulräume von halbstabilen Garben auf singulären Kurven. Der Hauptteil dieser Dissertation ist der Berechnung der Eulerzahlen dieser Modulräume gewidmet. Diese Resultate sind von unabhängigem Interesse.
Resumo:
Die Verbindung von elektrisch aktiven, lebenden Zellen zu extrazellulären Sensorsystemen eröffnet vielfälige Möglichkeiten im Bereich der Biosensorik. Die vorliegende Arbeit leistet einen Beitrag zum tieferen Verständnis der elektrischen Kopplungsmechanismen zwischen den biologischen und elektronischen Teilen solcher Hybridsysteme. Es wurden dazu drei Hauptbereiche bearbeitet:Ein System zur extrazellulären Signalableitung an lebenden Zellen bestehend aus einem Sensorchip, einem Vorverstärkerkopf und einem Hauptverstärker wurde weiterentwickelt.Als Sensoren wurden entweder Metallmikroelektroden-Chips mit 64 Kanälen oder Feldeffekt Transistoren-Chips mit 16 Kanälen (FET) eingesetzt. Es wurden zusätzlich spezielle FET Sensoren mit Rückseitenkontakten hergestellt und eingesetzt.Die elektrische Kopplung von einzelnen Nervenzellen der neuronalen Zell-Linien SH-SY5Y und TR14 oder primär kultivierten Neuronen aus dem Hirnstamm oder dem Hippocampus von embryonalen Ratten mit den extrazellulären Sensoren wurde untersucht. In der 'whole-cell' Patch-Clamp Technik wurden die Beiträge der spannungsgesteuerten Na+- und K+-Ionenkanäle zur extrazellulären Signalform identifiziert. Die Simulation der Signale mit einem Ersatzschaltkreis (Punkt-Kontakt Modell), der in PSPICE implementiert wurde, deutet auf eine starke Abhängigkeit der Signalformen in bezug auf Konzentrationsänderungen von Na+- und K+-Ionen im Volumenbereich zwischen Zelle und den ionensensitiven Transistoren hin. Ein empirisch erweitertes Punkt-Kontakt Modell wurde daraufhin vorgestellt.Im dritten Teil der Arbeit wurden Zellschichten von Kardiomyocyten embryonaler Ratten auf den extrazellulären Sensoren kultiviert. Die Eignung eines solchen Hybridsensors als Modellherz fuer das pharmazeutische Screeing wurde durch Messungen mit Herzstimulanzien und -relaktanzien bestätigt.
Resumo:
In dieser Arbeit wurden wässrige Suspensionen ladungsstabilisierter kolloidaler Partikel bezüglich ihres Verhaltens unter dem Einfluss elektrischer Felder untersucht. Insbesondere wurde die elektrophoretische Mobilität µ über einen weiten Partikelkonzentrationsbereich studiert, um das individuelle Verhalten einzelner Partikel mit dem bisher nur wenig untersuchten kollektiven Verhalten von Partikelensembles (speziell von fluid oder kristallin geordneten Ensembles) zu vergleichen. Dazu wurde ein superheterodynes Dopplervelocimetrisches Lichtstreuexperiment mit integraler und lokaler Datenerfassung konzipiert, das es erlaubt, die Geschwindigkeit der Partikel in elektrischen Feldern zu studieren. Das Experiment wurde zunächst erfolgreich im Bereich nicht-ordnender und fluid geordneter Suspensionen getestet. Danach konnte mit diesem Gerät erstmals das elektrophoretische Verhalten von kristallin geordneten Suspensionen untersucht werden. Es wurde ein komplexes Fließverhalten beobachtet und ausführlich dokumentiert. Dabei wurden bisher in diesem Zusammenhang noch nicht beobachtete Effekte wie Blockfluss, Scherbandbildung, Scherschmelzen oder elastische Resonanzen gefunden. Andererseits machte dieses Verhalten die Entwicklung einer neuen Auswertungsroutine für µ im kristallinen Zustand notwendig, wozu die heterodyne Lichtstreutheorie auf den superheterodynen Fall mit Verscherung erweitert werden musste. Dies wurde zunächst für nicht geordnete Systeme durchgeführt. Diese genäherte Beschreibung genügte, um unter den gegebenen Versuchbedingungen auch das Lichtstreuverhalten gescherter kristalliner Systeme zu interpretieren. Damit konnte als weiteres wichtiges Resultat eine generelle Mobilitäts-Konzentrations-Kurve erhalten werden. Diese zeigt bei geringen Partikelkonzentrationen den bereits bekannten Anstieg und bei mittleren Konzentrationen ein Plateau. Bei hohen Konzentrationen sinkt die Mobilität wieder ab. Zur Interpretation dieses Verhaltens bzgl. Partikelladung stehen derzeit nur Theorien für nicht wechselwirkende Partikel zur Verfügung. Wendet man diese an, so findet man eine überraschend gute Übereinstimmung der elektrophoretisch bestimmten Partikelladung Z*µ mit numerisch bestimmten effektiven Partikelladungen Z*PBC.
Resumo:
Der ungarische Mathematiker Friedrich Riesz studierte und forschte in den mathematischen Milieus von Budapest, Göttingen und Paris. Die vorliegende Arbeit möchte zeigen, daß die Beiträge von Riesz zur Herausbildung eines abstrakten Raumbegriffs durch eine Verknüpfung von Entwicklungen aus allen drei mathematischen Kulturen ermöglicht wurden, in denen er sich bewegt hat. Die Arbeit konzentriert sich dabei auf den von Riesz 1906 veröffentlichten Text „Die Genesis des Raumbegriffs". Sowohl für seine Fragestellungen als auch für seinen methodischen Zugang fand Riesz vor allem in Frankreich und Göttingen Anregungen: Henri Poincarés Beiträge zur Raumdiskussion, Maurice Fréchets Ansätze einer abstrakten Punktmengenlehre, David Hilberts Charakterisierung der Stetigkeit des geometrischen Raumes. Diese Impulse aufgreifend suchte Riesz ein Konzept zu schaffen, das die Forderungen von Poincaré, Hilbert und Fréchet gleichermaßen erfüllte. So schlug Riesz einen allgemeinen Begriff des mathematischen Kontinuums vor, dem sich Fréchets Konzept der L-Klasse, Hilberts Mannigfaltigkeitsbegriff und Poincarés erfahrungsgemäße Vorstellung der Stetigkeit des ‚wirklichen' Raumes unterordnen ließen. Für die Durchführung seines Projekts wandte Riesz mengentheoretische und axiomatische Methoden an, die er der Analysis in Frankreich und der Geometrie bei Hilbert entnommen hatte. Riesz' aufnahmebereite Haltung spielte dabei eine zentrale Rolle. Diese Haltung kann wiederum als ein Element der ungarischen mathematischen Kultur gedeutet werden, welche sich damals ihrerseits stark an den Entwicklungen in Frankreich und Deutschland orientierte. Darüber hinaus enthält Riesz’ Arbeit Ansätze einer konstruktiven Mengenlehre, die auf René Baire zurückzuführen sind. Aus diesen unerwarteten Ergebnissen ergibt sich die Aufgabe, den Bezug von Riesz’ und Baires Ideen zur späteren intuitionistischen Mengenlehre von L.E.J. Brouwer und Hermann Weyl weiter zu erforschen.
Resumo:
The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
It is currently widely accepted that the understanding of complex cell functions depends on an integrated network theoretical approach and not on an isolated view of the different molecular agents. Aim of this thesis was the examination of topological properties that mirror known biological aspects by depicting the human protein network with methods from graph- and network theory. The presented network is a partial human interactome of 9222 proteins and 36324 interactions, consisting of single interactions reliably extracted from peer-reviewed scientific publications. In general, one can focus on intra- or intermodular characteristics, where a functional module is defined as "a discrete entity whose function is separable from those of other modules". It is found that the presented human network is also scale-free and hierarchically organised, as shown for yeast networks before. The interactome also exhibits proteins with high betweenness and low connectivity which are biologically analyzed and interpreted here as shuttling proteins between organelles (e.g. ER to Golgi, internal ER protein translocation, peroxisomal import, nuclear pores import/export) for the first time. As an optimisation for finding proteins that connect modules, a new method is developed here based on proteins located between highly clustered regions, rather than regarding highly connected regions. As a proof of principle, the Mediator complex is found in first place, the prime example for a connector complex. Focusing on intramodular aspects, the measurement of k-clique communities discriminates overlapping modules very well. Twenty of the largest identified modules are analysed in detail and annotated to known biological structures (e.g. proteasome, the NFκB-, TGF-β complex). Additionally, two large and highly interconnected modules for signal transducer and transcription factor proteins are revealed, separated by known shuttling proteins. These proteins yield also the highest number of redundant shortcuts (by calculating the skeleton), exhibit the highest numbers of interactions and might constitute highly interconnected but spatially separated rich-clubs either for signal transduction or for transcription factors. This design principle allows manifold regulatory events for signal transduction and enables a high diversity of transcription events in the nucleus by a limited set of proteins. Altogether, biological aspects are mirrored by pure topological features, leading to a new view and to new methods that assist the annotation of proteins to biological functions, structures and subcellular localisations. As the human protein network is one of the most complex networks at all, these results will be fruitful for other fields of network theory and will help understanding complex network functions in general.
Resumo:
In this work we investigate the deformation theory of pairs of an irreducible symplectic manifold X together with a Lagrangian subvariety Y in X, where the focus is on singular Lagrangian subvarieties. Among other things, Voisin's results [Voi92] are generalized to the case of simple normal crossing subvarieties; partial results are also obtained for more complicated singularities.rnAs done in Voisin's article, we link the codimension of the subspace of the universal deformation space of X parametrizing those deformations where Y persists, to the rank of a certain map in cohomology. This enables us in some concrete cases to actually calculate or at least estimate the codimension of this particular subspace. In these cases the Lagrangian subvarieties in question occur as fibers or fiber components of a given Lagrangian fibration f : X --> B. We discuss examples and the question of how our results might help to understand some aspects of Lagrangian fibrations.
Resumo:
In technical design processes in the automotive industry, digital prototypes rapidly gain importance, because they allow for a detection of design errors in early development stages. The technical design process includes the computation of swept volumes for maintainability analysis and clearance checks. The swept volume is very useful, for example, to identify problem areas where a safety distance might not be kept. With the explicit construction of the swept volume an engineer gets evidence on how the shape of components that come too close have to be modified.rnIn this thesis a concept for the approximation of the outer boundary of a swept volume is developed. For safety reasons, it is essential that the approximation is conservative, i.e., that the swept volume is completely enclosed by the approximation. On the other hand, one wishes to approximate the swept volume as precisely as possible. In this work, we will show, that the one-sided Hausdorff distance is the adequate measure for the error of the approximation, when the intended usage is clearance checks, continuous collision detection and maintainability analysis in CAD. We present two implementations that apply the concept and generate a manifold triangle mesh that approximates the outer boundary of a swept volume. Both algorithms are two-phased: a sweeping phase which generates a conservative voxelization of the swept volume, and the actual mesh generation which is based on restricted Delaunay refinement. This approach ensures a high precision of the approximation while respecting conservativeness.rnThe benchmarks for our test are amongst others real world scenarios that come from the automotive industry.rnFurther, we introduce a method to relate parts of an already computed swept volume boundary to those triangles of the generator, that come closest during the sweep. We use this to verify as well as to colorize meshes resulting from our implementations.
Resumo:
In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.
Resumo:
Ist $f: X \to S$ eine glatte Familie von Calabi-Yau-Mannigfaltigkeiten der Dimension $m$ über einer quasiprojektiven Kurve, so trägt nach einem Resultat von Zucker die erste $L^2$-Kohomologiegruppe $H^1_{(2)}(S, R^m f_* \mathbb{C}_X)$ eine reine Hodgestruktur vom Gewicht $m+1$. In dieser Arbeit berechnen wir die Hodgezahlen solcher Hodgestrukturen für $m= 1, 2, 3$ und verallgemeinern dabei Formeln aus einem Artikel von del Angel, Müller-Stach, van Straten und Zuo auf den Fall, in dem die lokalen Monodromiematrizen bei Unendlich nicht unipotent, sondern echt quasi-unipotent sind. Wir verwenden dazu den $L^2$-Higgs-Komplex nach Jost, Yang und Zuo. Für Familien von Kurven führt dies auf eine bereits bekannte Formel von Cox und Zucker. Schließlich wenden wir die Ergebnisse im Fall $m=3$ auf 14 Familien von Calabi-Yau-Mannigfaltigkeiten an, die eine Rolle in der Spiegelsymmetrie spielen, sowie auf eine von Rohde konstruierte Familie ohne Punkte mit maximal unipotenter Monodromie.