29 resultados para Feynman integrals
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.
Resumo:
Die Berechnung von experimentell überprüfbaren Vorhersagen aus dem Standardmodell mit Hilfe störungstheoretischer Methoden ist schwierig. Die Herausforderungen liegen in der Berechnung immer komplizierterer Feynman-Integrale und dem zunehmenden Umfang der Rechnungen für Streuprozesse mit vielen Teilchen. Neue mathematische Methoden müssen daher entwickelt und die zunehmende Komplexität durch eine Automatisierung der Berechnungen gezähmt werden. In Kapitel 2 wird eine kurze Einführung in diese Thematik gegeben. Die nachfolgenden Kapitel sind dann einzelnen Beiträgen zur Lösung dieser Probleme gewidmet. In Kapitel 3 stellen wir ein Projekt vor, das für die Analysen der LHC-Daten wichtig sein wird. Ziel des Projekts ist die Berechnung von Einschleifen-Korrekturen zu Prozessen mit vielen Teilchen im Endzustand. Das numerische Verfahren wird dargestellt und erklärt. Es verwendet Helizitätsspinoren und darauf aufbauend eine neue Tensorreduktionsmethode, die Probleme mit inversen Gram-Determinanten weitgehend vermeidet. Es wurde ein Computerprogramm entwickelt, das die Berechnungen automatisiert ausführen kann. Die Implementierung wird beschrieben und Details über die Optimierung und Verifizierung präsentiert. Mit analytischen Methoden beschäftigt sich das vierte Kapitel. Darin wird das xloopsnosp-Projekt vorgestellt, das verschiedene Feynman-Integrale mit beliebigen Massen und Impulskonfigurationen analytisch berechnen kann. Die wesentlichen mathematischen Methoden, die xloops zur Lösung der Integrale verwendet, werden erklärt. Zwei Ideen für neue Berechnungsverfahren werden präsentiert, die sich mit diesen Methoden realisieren lassen. Das ist zum einen die einheitliche Berechnung von Einschleifen-N-Punkt-Integralen, und zum anderen die automatisierte Reihenentwicklung von Integrallösungen in höhere Potenzen des dimensionalen Regularisierungsparameters $epsilon$. Zum letzteren Verfahren werden erste Ergebnisse vorgestellt. Die Nützlichkeit der automatisierten Reihenentwicklung aus Kapitel 4 hängt von der numerischen Auswertbarkeit der Entwicklungskoeffizienten ab. Die Koeffizienten sind im allgemeinen Multiple Polylogarithmen. In Kapitel 5 wird ein Verfahren für deren numerische Auswertung vorgestellt. Dieses neue Verfahren für Multiple Polylogarithmen wurde zusammen mit bekannten Verfahren für andere Polylogarithmus-Funktionen als Bestandteil der CC-Bibliothek ginac implementiert.
Resumo:
The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.
Resumo:
In dieser Arbeit wurde die elektromagnetische Pionproduktion unter der Annahme der Isospinsymmetrie der starken Wechselwirkung im Rahmen der manifest Lorentz-invarianten chiralen Störungstheorie in einer Einschleifenrechnung bis zur Ordnung vier untersucht. Dazu wurden auf der Grundlage des Mathematica-Pakets FeynCalc Algorithmen zur Berechnung der Pionproduktionsamplitude entwickelt. Bis einschließlich der Ordnung vier tragen insgesamt 105 Feynmandiagramme bei, die sich in 20 Baumdiagramme und 85 Schleifendiagramme unterteilen lassen. Von den 20 Baumdiagrammen wiederum sind 16 als Polterme und vier als Kontaktgraphen zu klassifizieren; bei den Schleifendiagrammen tragen 50 Diagramme ab der dritten Ordnung und 35 Diagramme ab der vierten Ordnung bei. In der Einphotonaustauschnäherung lässt sich die Pionproduktionsamplitude als ein Produkt des Polarisationsvektors des (virtuellen) Photons und des Übergangsstrommatrixelements parametrisieren, wobei letzteres alle Abhängigkeiten der starken Wechselwirkung beinhaltet und wo somit die chirale Störungstheorie ihren Eingang findet. Der Polarisationsvektor hingegen hängt von dem leptonischen Vertex und dem Photonpropagator ab und ist aus der QED bekannt. Weiterhin lässt sich das Übergangsstrommatrixelement in sechs eichinvariante Amplituden zerlegen, die sich im Rahmen der Isospinsymmetrie jeweils wiederum in drei Isospinamplituden zerlegen lassen. Linearkombinationen dieser Isospinamplituden erlauben letztlich die Beschreibung der physikalischen Amplituden. Die in dieser Rechnung auftretenden Einschleifenintegrale wurden numerisch mittels des Programms LoopTools berechnet. Im Fall tensorieller Integrale erfolgte zunächst eine Zerlegung gemäß der Methode von Passarino und Veltman. Da die somit erhaltenen Ergebnisse jedoch i.a. noch nicht das chirale Zählschema erfüllen, wurde die entsprechende Renormierung mittels der reformulierten Infrarotregularisierung vorgenommen. Zu diesem Zweck wurde ein Verfahren entwickelt, welches die Abzugsterme automatisiert bestimmt. Die schließlich erhaltenen Isospinamplituden wurden in das Programm MAID eingebaut. In diesem Programm wurden als Test (Ergebnisse bis Ordnung drei) die s-Wellenmultipole E_{0+} und L_{0+} in der Schwellenregion berechnet. Die Ergebnisse wurden sowohl mit Messdaten als auch mit den Resultaten des "klassischen" MAID verglichen, wobei sich i. a. gute Übereinstimmungen im Rahmen der Fehler ergaben.
Resumo:
This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.
Resumo:
Das experimentelle Studium der 1966 von Gerasimov, Drell undHearn unabhängig voneinander aufgestellten und als GDH-SummenregelbezeichnetenRelation macht die Vermessung totalerPhotoabsorptionswirkungsquerschnitte von zirkular polarisierten Photonen an longitudinalpolarisierten Nukleonen über einen weiten Energiebereich notwendig. Die im Sommer1998 erfolgte Messung am Mainzer Mikrotron stellt das erste derartigeExperiment mit reellen Photonen zur Messung des GDH-Integrals am Protondar. Die Verwendung eines Frozen-Spin-Butanoltargets, das eingesetzt wurde, umeinen möglichst hohen Proton-Polarisationsgrad zu erreichen, hat diezusätzliche experimentelle Schwierigkeit zur Folge, daß die imButanoltarget enthaltenen Kohlenstoffkerne ebenfalls Reaktionsprodukte liefern, diezusammen mit den am Proton erzeugten nachgewiesen werden.Ziel der Arbeit war die Bestimmung von Wirkungsquerschnittenam freien Proton aus Messungen an einem komplexen Target (CH2) wie esbeim polarisiertenTarget vorliegt. Die hierzu durchgeführten Pilotexperimentedienten neben der Entwicklung von Methoden zur Reaktionsidentifikation auchder Eichung des Detektorsystems. Durch die Reproduktion der schon bekanntenund vermessenen unpolarisierten differentiellen und totalenEin-Pion-Wirkungsquerschnitte am Proton (gamma p -> p pi0 und gamma p -> n pi+), die bis zueiner Photonenergievon etwa 400 MeV den Hauptbeitrag zum GDH-Integralausmachen, konnte gezeigt werden, daß eine Separation der Wasserstoff- vonKohlenstoffereignissen möglich ist. Die notwendigen Techniken hierzu wurden imRahmen dieser Arbeit zu einem allgemein nutzbaren Werkzeug entwickelt.Weiterhin konnte gezeigt werden, daß der vom Kohlenstoffstammende Anteil der Reaktionen keine Helizitätsabhängigkeit besitzt. Unterdieser Voraussetzung reduziert sich die Bestimmung der helizitätsabhängigenWirkungsquerschnittsdifferenz auf eine einfacheDifferenzbildung. Aus den erhaltenen Ergebnissen der intensiven Analyse von Daten, diemit einem unpolarisierten Target erhalten wurden, konnten so schnellerste Resultate für Messungen, die mit dem polarisierten Frozen-Spin-Targetaufgenommen wurden, geliefert werden. Es zeigt sich, daß sich dieseersten Resultate für polarisierte differentielle und totale (gammaN)-Wirkungsquerschnitte im Delta-Bereich in guter Übereinstimmung mit theoretischenAnalysen befinden.
Resumo:
In recent years, new precision experiments have become possible withthe high luminosity accelerator facilities at MAMIand JLab, supplyingphysicists with precision data sets for different hadronic reactions inthe intermediate energy region, such as pion photo- andelectroproduction and real and virtual Compton scattering.By means of the low energy theorem (LET), the global properties of thenucleon (its mass, charge, and magnetic moment) can be separated fromthe effects of the internal structure of the nucleon, which areeffectively described by polarizabilities. Thepolarizabilities quantify the deformation of the charge andmagnetization densities inside the nucleon in an applied quasistaticelectromagnetic field. The present work is dedicated to develop atool for theextraction of the polarizabilities from these precise Compton data withminimum model dependence, making use of the detailed knowledge of pionphotoproduction by means of dispersion relations (DR). Due to thepresence of t-channel poles, the dispersion integrals for two ofthe six Compton amplitudes diverge. Therefore, we have suggested to subtract the s-channel dispersion integrals at zero photon energy($nu=0$). The subtraction functions at $nu=0$ are calculated through DRin the momentum transfer t at fixed $nu=0$, subtracted at t=0. For this calculation, we use the information about the t-channel process, $gammagammatopipito Nbar{N}$. In this way, four of thepolarizabilities can be predicted using the unsubtracted DR in the $s$-channel. The other two, $alpha-beta$ and $gamma_pi$, are free parameters in ourformalism and can be obtained from a fit to the Compton data.We present the results for unpolarized and polarized RCS observables,%in the kinematics of the most recent experiments, and indicate anenhanced sensitivity to the nucleon polarizabilities in theenergy range between pion production threshold and the $Delta(1232)$-resonance.newlineindentFurthermore,we extend the DR formalism to virtual Compton scattering (radiativeelectron scattering off the nucleon), in which the concept of thepolarizabilities is generalized to the case of avirtual initial photon by introducing six generalizedpolarizabilities (GPs). Our formalism provides predictions for the fourspin GPs, while the two scalar GPs $alpha(Q^2)$ and $beta(Q^2)$ have to befitted to the experimental data at each value of $Q^2$.We show that at energies betweenpion threshold and the $Delta(1232)$-resonance position, thesensitivity to the GPs can be increased significantly, as compared tolow energies, where the LEX is applicable. Our DR formalism can be used for analysing VCS experiments over a widerange of energy and virtuality $Q^2$, which allows one to extract theGPs from VCS data in different kinematics with a minimum of model dependence.
Resumo:
Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit derAutomatisierung von Berechnungen virtuellerStrahlungskorrekturen in perturbativen Quantenfeldtheorien.Die Berücksichtigung solcher Korrekturen aufMehrschleifen-Ebene in der Störungsreihenentwicklung istheute unabdingbar, um mit der wachsenden Präzisionexperimenteller Resultate Schritt zu halten. Im allgemeinen kinematischen Fall können heute nur dieEinschleifen-Korrekturen als theoretisch gelöst angesehenwerden -- für höhere Ordnungen liegen nur Teilergebnissevor. In Mainz sind in den letzten Jahren einige neuartigeMethoden zur Integration von Zweischleifen-Feynmandiagrammenentwickelt und im xloops-Paket in algorithmischer Formteilweise erfolgreich implementiert worden. Die verwendetenVerfahren sind eine Kombination exakter symbolischerRechenmethoden mit numerischen. DieZweischleifen-Vierbeinfunktionen stellen in diesem Rahmenein neues Kapitel dar, das durch seine große Anzahl vonfreien kinematischen Parametern einerseits leichtunüberschaubar wird und andererseits auch auf symbolischerEbene die bisherigen Anforderungen übersteigt. Sie sind ausexperimenteller Sicht aber für manche Streuprozesse vongroßem Interesse. In dieser Arbeit wurde, basierend auf einer Idee von DirkKreimer, ein Verfahren untersucht, welches die skalarenVierbeinfunktionen auf Zweischleifen-Niveau ganz ohneRandbedingungen an den Parameterraum zu integrierenversucht. Die Struktur der nach vier Residuenintegrationenauftretenden Terme konnte dabei weitgehend geklärt und dieKomplexität der auftretenden Ausdrücke soweit verkleinertwerden, dass sie von heutigen Rechnern darstellbar sind.Allerdings ist man noch nicht bei einer vollständigautomatisierten Implementierung angelangt. All dies ist dasThema von Kapitel 2. Die Weiterentwicklung von xloops über Zweibeinfunktionenhinaus erschien aus vielfältigen Gründen allerdings nichtmehr sinnvoll. Im Rahmen dieser Arbeit wurde daher einradikaler Bruch vollzogen und zusammen mit C. Bauer und A.Frink eine Programmbibliothek entworfen, die als Vehikel fürsymbolische Manipulationen dient und es uns ermöglicht,übliche symbolische Sprachen wie Maple durch C++ zuersetzen. Im dritten Kapitel wird auf die Gründeeingegangen, warum diese Umstellung sinnvoll ist, und dabeidie Bibliothek GiNaC vorgestellt. Im vierten Kapitel werdenDetails der Implementierung dann im Einzelnen vorgestelltund im fünften wird sie auf ihre Praxistauglichkeituntersucht. Anhang A bietet eine Übersicht über dieverwendeten Hilfsmittel komplexer Analysis und Anhang Bbeschreibt ein bewährtes numerisches Instrument.
Resumo:
Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.
Resumo:
The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) ${cal O} (alpha_s^3)$ corrections to the hadroproduction of heavy quarks have raised the leading order (LO) ${cal O} (alpha_s^2)$ estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) ${cal O} (alpha_s^4)$ calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the ${cal O}(ep^2)$ expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter $ep$ up to ${cal O}(ep^{-2})$, the Laurent series of the scalar integrals has to be calculated up to ${cal O}(ep^2)$. The negative powers of $ep$ are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The ${cal O}(ep^2)$ expansion of the three- and four-point integrals contains in general classical polylogarithms up to ${rm Li}_4$ and $L$-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the $L$-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the $L$-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${cal O}(ep^2)$ results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The ${cal O}(ep^2)$ terms arise as a combination of the ${cal O}(ep^2)$ results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.
Resumo:
Im Rahmen der vorliegenden Dissertation wurde, basierend auf der Parallel-/Orthogonalraum-Methode, eine neue Methode zur Berechnung von allgemeinen massiven Zweischleifen-Dreipunkt-Tensorintegralen mit planarer und gedrehter reduzierter planarer Topologie entwickelt. Die Ausarbeitung und Implementation einer Tensorreduktion fuer Integrale, welche eine allgemeine Tensorstruktur im Minkowski-Raum besitzen koennen, wurde durchgefuehrt. Die Entwicklung und Implementation eines Algorithmus zur semi-analytischen Berechnung der schwierigsten Integrale, die nach der Tensorreduktion verbleiben, konnte vollendet werden. (Fuer die anderen Basisintegrale koennen wohlbekannte Methoden verwendet werden.) Die Implementation ist bezueglich der UV-endlichen Anteile der Masterintegrale, die auch nach Tensorreduktion noch die zuvor erwaehnten Topologien besitzen, abgeschlossen. Die numerischen Integrationen haben sich als stabil erwiesen. Fuer die verbleibenden Teile des Projektes koennen wohlbekannte Methoden verwendet werden. In weiten Teilen muessen lediglich noch Links zu existierenden Programmen geschrieben werden. Fuer diejenigen wenigen verbleibenden speziellen Topologien, welche noch zu implementieren sind, sind (wohlbekannte) Methoden zu implementieren. Die Computerprogramme, die im Rahmen dieses Projektes entstanden, werden auch fuer allgemeinere Prozesse in das xloops-Projekt einfliessen. Deswegen wurde sie soweit moeglich fuer allgemeine Prozesse entwickelt und implementiert. Der oben erwaehnte Algorithmus wurde insbesondere fuer die Evaluation der fermionischen NNLO-Korrekturen zum leptonischen schwachen Mischungswinkel sowie zu aehnlichen Prozessen entwickelt. Im Rahmen der vorliegenden Dissertation wurde ein Grossteil der fuer die fermionischen NNLO-Korrekturen zu den effektiven Kopplungskonstanten des Z-Zerfalls (und damit fuer den schachen Mischungswinkel) notwendigen Arbeit durchgefuehrt.
Resumo:
This thesis is concerned with calculations in manifestly Lorentz-invariant baryon chiral perturbation theory beyond order D=4. We investigate two different methods. The first approach consists of the inclusion of additional particles besides pions and nucleons as explicit degrees of freedom. This results in the resummation of an infinite number of higher-order terms which contribute to higher-order low-energy constants in the standard formulation. In this thesis the nucleon axial, induced pseudoscalar, and pion-nucleon form factors are investigated. They are first calculated in the standard approach up to order D=4. Next, the inclusion of the axial-vector meson a_1(1260) is considered. We find three diagrams with an axial-vector meson which are relevant to the form factors. Due to the applied renormalization scheme, however, the contributions of the two loop diagrams vanish and only a tree diagram contributes explicitly. The appearing coupling constant is fitted to experimental data of the axial form factor. The inclusion of the axial-vector meson results in an improved description of the axial form factor for higher values of momentum transfer. The contributions to the induced pseudoscalar form factor, however, are negligible for the considered momentum transfer, and the axial-vector meson does not contribute to the pion-nucleon form factor. The second method consists in the explicit calculation of higher-order diagrams. This thesis describes the applied renormalization scheme and shows that all symmetries and the power counting are preserved. As an application we determine the nucleon mass up to order D=6 which includes the evaluation of two-loop diagrams. This is the first complete calculation in manifestly Lorentz-invariant baryon chiral perturbation theory at the two-loop level. The numerical contributions of the terms of order D=5 and D=6 are estimated, and we investigate their pion-mass dependence. Furthermore, the higher-order terms of the nucleon sigma term are determined with the help of the Feynman-Hellmann theorem.