11 resultados para Computer Structure
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.
Resumo:
In dieser Arbeit wurden die Phasenübergänge einer einzelnen Polymerkette mit Hilfe der Monte Carlo Methode untersucht. Das Bondfluktuationsmodell wurde zur Simulation benutzt, wobei ein attraktives Kastenpotential zwischen allen Monomeren der Polymerkette gewirkt hat. Drei Arten von Bewegungen sind eingeführt worden, um die Polymerkette richtig zu relaxieren. Diese sind die Hüpfbewegung, die Reptationsbewegung und die Pivotbewegung. Um die Volumenausschlußwechselwirkung zu prüfen und um die Anzahl der Nachbarn jedes Monomers zu bestimmen ist ein hierarchischer Suchalgorithmus eingeführt worden. Die Zustandsdichte des Modells ist mittels des Wang-Landau Algorithmus bestimmt worden. Damit sind thermodynamische Größen berechnet worden, um die Phasenübergänge der einzelnen Polymerkette zu studieren. Wir haben zuerst eine freie Polymerkette untersucht. Der Knäuel-Kügelchen Übergang zeigt sich als ein kontinuierlicher Übergang, bei dem der Knäuel zum Kügelchen zusammenfällt. Der Kügelchen-Kügelchen Übergang bei niedrigeren Temperaturen ist ein Phasenübergang der ersten Ordnung, mit einer Koexistenz des flüssigen und festen Kügelchens, das eine kristalline Struktur hat. Im thermodynamischen Limes sind die Übergangstemperaturen identisch. Das entspricht einem Verschwinden der flüssigen Phase. In zwei Dimensionen zeigt das Modell einen kontinuierlichen Knäuel-Kügelchen Übergang mit einer lokal geordneten Struktur. Wir haben ferner einen Polymermushroom, das ist eine verankerte Polymerkette, zwischen zwei repulsiven Wänden im Abstand D untersucht. Das Phasenverhalten der Polymerkette zeigt einen dimensionalen crossover. Sowohl die Verankerung als auch die Beschränkung fördern den Knäuel-Kügelchen Übergang, wobei es eine Symmetriebrechung gibt, da die Ausdehnung der Polymerkette parallel zu den Wänden schneller schrumpft als die senkrecht zu den Wänden. Die Beschränkung hindert den Kügelchen-Kügelchen Übergang, wobei die Verankerung keinen Einfluss zu haben scheint. Die Übergangstemperaturen im thermodynamischen Limes sind wiederum identisch im Rahmen des Fehlers. Die spezifische Wärme des gleichen Modells aber mit einem abstoßendem Kastenpotential zeigt eine Schottky Anomalie, typisch für ein Zwei-Niveau System.
Resumo:
Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two ``walls'' providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-) long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y-direction along the walls then crosses over from the logarithmic increase (characteristic for $d=2$) to a linear increase (characteristic for d=1). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising- and XY-models is made
Resumo:
Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.
Resumo:
The ability of block copolymers to spontaneously self-assemble into a variety of ordered nano-structures not only makes them a scientifically interesting system for the investigation of order-disorder phase transitions, but also offers a wide range of nano-technological applications. The architecture of a diblock is the most simple among the block copolymer systems, hence it is often used as a model system in both experiment and theory. We introduce a new soft-tetramer model for efficient computer simulations of diblock copolymer melts. The instantaneous non-spherical shape of polymer chains in molten state is incorporated by modeling each of the two blocks as two soft spheres. The interactions between the spheres are modeled in a way that the diblock melt tends to microphase separate with decreasing temperature. Using Monte Carlo simulations, we determine the equilibrium structures at variable values of the two relevant control parameters, the diblock composition and the incompatibility of unlike components. The simplicity of the model allows us to scan the control parameter space in a completeness that has not been reached in previous molecular simulations.The resulting phase diagram shows clear similarities with the phase diagram found in experiments. Moreover, we show that structural details of block copolymer chains can be reproduced by our simple model.We develop a novel method for the identification of the observed diblock copolymer mesophases that formalizes the usual approach of direct visual observation,using the characteristic geometry of the structures. A cluster analysis algorithm is used to determine clusters of each component of the diblock, and the number and shape of the clusters can be used to determine the mesophase.We also employ methods from integral geometry for the identification of mesophases and compare their usefulness to the cluster analysis approach.To probe the properties of our model in confinement, we perform molecular dynamics simulations of atomistic polyethylene melts confined between graphite surfaces. The results from these simulations are used as an input for an iterative coarse-graining procedure that yields a surface interaction potential for the soft-tetramer model. Using the interaction potential derived in that way, we perform an initial study on the behavior of the soft-tetramer model in confinement. Comparing with experimental studies, we find that our model can reflect basic features of confined diblock copolymer melts.
Resumo:
In this thesis we are presenting a broadly based computer simulation study of two-dimensional colloidal crystals under different external conditions. In order to fully understand the phenomena which occur when the system is being compressed or when the walls are being sheared, it proved necessary to study also the basic motion of the particles and the diffusion processes which occur in the case without these external forces. In the first part of this thesis we investigate the structural transition in the number of rows which occurs when the crystal is being compressed by placing the structured walls closer together. Previous attempts to locate this transition were impeded by huge hysteresis effects. We were able to determine the transition point with higher precision by applying both the Schmid-Schilling thermodynamic integration method and the phase switch Monte Carlo method in order to determine the free energies. These simulations showed not only that the phase switch method can successfully be applied to systems with a few thousand particles and a soft crystalline structure with a superimposed pattern of defects, but also that this method is way more efficient than a thermodynamic integration when free energy differences are to be calculated. Additionally, the phase switch method enabled us to distinguish between several energetically very similar structures and to determine which one of them was actually stable. Another aspect considered in the first result chapter of this thesis is the ensemble inequivalence which can be observed when the structural transition is studied in the NpT and in the NVT ensemble. The second part of this work deals with the basic motion occurring in colloidal crystals confined by structured walls. Several cases are compared where the walls are placed in different positions, thereby introducing an incommensurability into the crystalline structure. Also the movement of the solitons, which are created in the course of the structural transition, is investigated. Furthermore, we will present results showing that not only the well-known mechanism of vacancies and interstitial particles leads to diffusion in our model system, but that also cooperative ring rotation phenomena occur. In this part and the following we applied Langevin dynamics simulations. In the last chapter of this work we will present results on the effect of shear on the colloidal crystal. The shear was implemented by moving the walls with constant velocity. We have observed shear banding and, depending on the shear velocity, that the inner part of the crystal breaks into several domains with different orientations. At very high shear velocities holes are created in the structure, which originate close to the walls, but also diffuse into the inner part of the crystal.
Resumo:
Die causa finalis der vorliegenden Arbeit ist das Verständnis des Phasendiagramms von Wasserstoff bei ultrahohen Drücken, welche von nichtleitendem H2 bis hin zu metallischem H reichen. Da die Voraussetzungen für ultrahohen Druck im Labor schwer zu schaffen sind, bilden Computersimulationen ein wichtiges alternatives Untersuchungsinstrument. Allerdings sind solche Berechnungen eine große Herausforderung. Eines der größten Probleme ist die genaue Auswertung des Born-Oppenheimer Potentials, welches sowohl für die nichtleitende als auch für die metallische Phase geeignet sein muss. Außerdem muss es die starken Korrelationen berücksichtigen, die durch die kovalenten H2 Bindungen und die eventuellen Phasenübergänge hervorgerufen werden. Auf dieses Problem haben unsere Anstrengungen abgezielt. Im Kontext von Variationellem Monte Carlo (VMC) ist die Shadow Wave Function (SWF) eine sehr vielversprechende Option. Aufgrund ihrer Flexibilität sowohl lokalisierte als auch delokalisierte Systeme zu beschreiben sowie ihrer Fähigkeit Korrelationen hoher Ordnung zu berücksichtigen, ist sie ein idealer Kandidat für unsere Zwecke. Unglücklicherweise bringt ihre Formulierung ein Vorzeichenproblem mit sich, was die Anwendbarkeit limitiert. Nichtsdestotrotz ist es möglich diese Schwierigkeit zu umgehen indem man die Knotenstruktur a priori festlegt. Durch diesen Formalismus waren wir in der Lage die Beschreibung der Elektronenstruktur von Wasserstoff signifikant zu verbessern, was eine sehr vielversprechende Perspektive bietet. Während dieser Forschung haben wir also die Natur des Vorzeichenproblems untersucht, das sich auf die SWF auswirkt, und dabei ein tieferes Verständnis seines Ursprungs erlangt. Die vorliegende Arbeit ist in vier Kapitel unterteilt. Das erste Kapitel führt VMC und die SWF mit besonderer Ausrichtung auf fermionische Systeme ein. Kapitel 2 skizziert die Literatur über das Phasendiagramm von Wasserstoff bei ultrahohem Druck. Das dritte Kapitel präsentiert die Implementierungen unseres VMC Programms und die erhaltenen Ergebnisse. Zum Abschluss fasst Kapitel 4 unsere Bestrebungen zur Lösung des zur SWF zugehörigen Vorzeichenproblems zusammen.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
In condensed matter systems, the interfacial tension plays a central role for a multitude of phenomena. It is the driving force for nucleation processes, determines the shape and structure of crystalline structures and is important for industrial applications. Despite its importance, the interfacial tension is hard to determine in experiments and also in computer simulations. While for liquid-vapor interfacial tensions there exist sophisticated simulation methods to compute the interfacial tension, current methods for solid-liquid interfaces produce unsatisfactory results.rnrnAs a first approach to this topic, the influence of the interfacial tension on nuclei is studied within the three-dimensional Ising model. This model is well suited because despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below the so-called roughening temperature, nuclei in the Ising model are not spherical anymore but become cubic because of the anisotropy of the interfacial tension. This is similar to crystalline nuclei, which are in general not spherical but more like a convex polyhedron with flat facets on the surface. In this context, the problem of distinguishing between the two bulk phases in the vicinity of the diffuse droplet surface is addressed. A new definition is found which correctly determines the volume of a droplet in a given configuration if compared to the volume predicted by simple macroscopic assumptions.rnrnTo compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo method called ensemble switch method'' is presented which allows to compute the interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with great accuracy. In the past, the dependence of the interfacial tension on the finite size and shape of the simulation box has often been neglected although there is a nontrivial dependence on the box dimensions. As a consequence, one needs to systematically increase the box size and extrapolate to infinite volume in order to accurately predict the interfacial tension. Therefore, a thorough finite-size scaling analysis is established in this thesis. Logarithmic corrections to the finite-size scaling are motivated and identified, which are of leading order and therefore must not be neglected. The astounding feature of these logarithmic corrections is that they do not depend at all on the model under consideration. Using the ensemble switch method, the validity of a finite-size scaling ansatz containing the aforementioned logarithmic corrections is carefully tested and confirmed. Combining the finite-size scaling theory with the ensemble switch method, the interfacial tension of several model systems, ranging from the Ising model to colloidal systems, is computed with great accuracy.
Resumo:
Molecular dynamics simulations of silicate and borate glasses and melts: Structure, diffusion dynamics and vibrational properties. In this work computer simulations of the model glass formers SiO2 and B2O3 are presented, using the techniques of classical molecular dynamics (MD) simulations and quantum mechanical calculations, based on density functional theory (DFT). The latter limits the system size to about 100−200 atoms. SiO2 and B2O3 are the two most important network formers for industrial applications of oxide glasses. Glass samples are generated by means of a quench from the melt with classical MD simulations and a subsequent structural relaxation with DFT forces. In addition, full ab initio quenches are carried out with a significantly faster cooling rate. In principle, the structural properties are in good agreement with experimental results from neutron and X-ray scattering, in all cases. A special focus is on the study of vibrational properties, as they give access to low-temperature thermodynamic properties. The vibrational spectra are calculated by the so-called ”frozen phonon” method. In all cases, the DFT curves show an acceptable agreement with experimental results of inelastic neutron scattering. In case of the model glass former B2O3, a new classical interaction potential is parametrized, based on the liquid trajectory of an ab initio MD simulation at 2300 K. In this course, a structural fitting routine is used. The inclusion of 3-body angular interactions leads to a significantly improved agreement of the liquid properties of the classical MD and ab initio MD simulations. However, the generated glass structures, in all cases, show a significantly lower fraction of 3-membered planar boroxol rings as predicted by experimental results (f=60%-80%). The largest boroxol ring fraction of f=15±5% is observed in the full ab initio quenches from 2300 K. In case of SiO2, the glass structures after the quantum mechanical relaxation are the basis for calculations of the linear thermal expansion coefficient αL(T), employing the quasi-harmonic approximation. The striking observation is a change change of sign of αL(T) going along with a temperature range of negative αL(T) at low temperatures, which is in good agreement with experimental results.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn