11 resultados para Atmospheric composition

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrische Vegetation, vor allem tropischer Regenwald, emittiert grosse Mengen flüchtiger organischer Verbindungen (VOCs) in die rnAtmosphäre, die durch Oxidationsreaktionen und Deposition der Reaktionsprodukte wieder entfernt werden. Die Oxidation wird vor allem durch Hydroxyl-Radikale (OH) initiiert, die hauptsächlich durch Photodissoziation von Ozon gebildet werden. Zuvor ging man davon aus, dass biogene VOCs OH in unverschmutzter Luft abbauen und dadurch die atmosphärische Oxidationskapazität verringern. Umgekehrt, führt rndie Oxidation von VOCs in verschmutzter Luft durch die katalytische Wirkung von Stickstoffoxiden (NOx = NO + NO2) zu schädlicher Oxidationsmittelbildung. Flugzeugmessungen atmosphärischer Spurengase, die über dem unberührten Amazonas-Regenwald durchgeführt worden sind, haben jedoch unerwartet hohe OH-Konzentrationen aufgezeigt. Das VOC mit der höchsten Emission in dieser Region war Isopren, dessen Oxidation als stärkeste OH-Senke berechnet wurde. In dieser Arbeit wurde die Hypothese genauestens untersucht, dass die natürliche Isopren-Oxidation in niedrig-NOx Luft OH effizient erneuert. Es wurde ein sehr detaillierter Oxidationsmechanismus für Isopren entwickelt, in dem neueste experimentelle und theoretische Fortschritte umgesetzt worden sind. Die Haupt-OH-Rückgewinnungswege wurden angewendet wodurch gezeigt wurde, dass sie wesentlich zur Oxidation unter niedrig-NOx Bedingungen beitragen. Verstärkte OH-Konzentrationen blieben unter verminderten Lichtverhältnissen, wie sie unter dichten Vegetationsdächern typisch sind, dauerhaft erhalten. Im Vergleich zu Flugzeugmessungen, der neue Oxidationsmechanismus reproduziert die OH-Konzentrationen innerhalb des Unsicherheitsbereiches. Darüber hinaus zeigten Simulationen eine erhebliche Produktion eines Isopren-Dihydroxyepoxids, das ein potenziell wichtiger Vorläufer organischer Aerosole in der Atmosphäre sein könnte. Es wurde einen neuen vereinfachten Oxidationsmechanismus auf Basis des traditionellen Wissenstands entwickelt und seine Anwendung für globale atmosphärische Studien getestet. Die Eingliederung der neuen Oxidationswege in diesen Mechanismus ermöglicht es folgende Auswirkungen der verstärkten VOC-Oxidation zu studieren die Zusammensetzung der Atmosphäre, den Austausch zwischen Erdoberfläche und Atmosphäre, Aerosole und Klima.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exchange of chemical constituents between ocean and atmosphere provides potentially important feedback mechanisms in the climate system. The aim of this study is to develop and evaluate a chemically coupled global atmosphere-ocean model. For this, an atmosphere-ocean general circulation model with atmospheric chemistry has been expanded to include oceanic biogeochemistry and the process of air-sea gas exchange. The calculation of seawater concentrations in the oceanic biogeochemistry submodel has been expanded from DMS, CO₂

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stratosphärische Partikel sind typischerweise mit dem bloßen Auge nicht wahrnehmbar. Dennoch haben sie einen signifikanten Einfluss auf die Strahlungsbilanz der Erde und die heteorogene Chemie in der Stratosphäre. Kontinuierliche, vertikal aufgelöste, globale Datensätze sind daher essenziell für das Verständnis physikalischer und chemischer Prozesse in diesem Teil der Atmosphäre. Beginnend mit den Messungen des zweiten Stratospheric Aerosol Measurement (SAM II) Instruments im Jahre 1978 existiert eine kontinuierliche Zeitreihe für stratosphärische Aerosol-Extinktionsprofile, welche von Messinstrumenten wie dem zweiten Stratospheric Aerosol and Gas Experiment (SAGE II), dem SCIAMACHY, dem OSIRIS und dem OMPS bis heute fortgeführt wird. rnrnIn dieser Arbeit wird ein neu entwickelter Algorithmus vorgestellt, der das sogenannte ,,Zwiebel-Schäl Prinzip'' verwendet, um Extinktionsprofile zwischen 12 und 33 km zu berechnen. Dafür wird der Algorithmus auf Radianzprofile einzelner Wellenlängen angewandt, die von SCIAMACHY in der Limb-Geometrie gemessen wurden. SCIAMACHY's einzigartige Methode abwechselnder Limb- und Nadir-Messungen bietet den Vorteil, hochaufgelöste vertikale und horizontale Messungen mit zeitlicher und räumlicher Koinzidenz durchführen zu können. Die dadurch erlangten Zusatzinformationen können verwendet werden, um die Effekte von horizontalen Gradienten entlang der Sichtlinie des Messinstruments zu korrigieren, welche vor allem kurz nach Vulkanausbrüchen und für polare Stratosphärenwolken beobachtet werden. Wenn diese Gradienten für die Berechnung von Extinktionsprofilen nicht beachtet werden, so kann dies dazu führen, dass sowohl die optischen Dicke als auch die Höhe von Vulkanfahnen oder polarer Stratosphärenwolken unterschätzt werden. In dieser Arbeit wird ein Verfahren vorgestellt, welches mit Hilfe von dreidimensionalen Strahlungstransportsimulationen und horizontal aufgelösten Datensätzen die berechneten Extinktionsprofile korrigiert.rnrnVergleichsstudien mit den Ergebnissen von Satelliten- (SAGE II) und Ballonmessungen zeigen, dass Extinktionsprofile von stratosphärischen Partikeln mit Hilfe des neu entwickelten Algorithmus berechnet werden können und gut mit bestehenden Datensätzen übereinstimmen. Untersuchungen des Nabro Vulkanausbruchs 2011 und des Auftretens von polaren Stratosphärenwolken in der südlichen Hemisphäre zeigen, dass das Korrekturverfahren für horizontale Gradienten die berechneten Extinktionsprofile deutlich verbessert.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable isotope composition of atmospheric carbon monoxide: A modelling study.rnrnThis study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC−1 measurement platform.rnrnThe systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface emissions, likely underestimated over East Asia, are responsible for roughly half of the discrepancies between the simulated and observed 13CO in the northern hemisphere (NH), whereas the remote southern hemisphere (SH) compositions suggest an underestimated fractionation during the oxidation of CO by the hydroxyl radical (OH). A reanalysis of the kinetic isotope effect (KIE) in this reaction contrasts the conventional assumption of a mere pressure dependence, and instead suggests an additional temperature dependence of the 13C KIE, which is driven by changes in the partitioning of the reaction exit channels. This result is yet to be confirmed in the laboratory.rnrnApart from 13CO, for the first time the atmospheric distribution of the oxygen mass-independent fractionation (MIF) in CO, Δ17O, has been consistently simulated on the global scale with EMAC. The applicability of Δ17O(CO) observations to unravelling changes in the tropospheric CH4-CO-OH system has been scrutinised, as well as the implications of the ozone (O3) input to the CO isotope oxygen budget. The Δ17O(CO) is confirmed to be the principal signal for the CO photochemical age, thus providing a measure for the OH chiefly involved in the sink of CO. The highly mass-independently fractionated O3 oxygen is estimated to comprise around 2% of the overall tropospheric CO source, which has implications for the δ18O, but less likely for the Δ17O CO budgets. Finally, additional sensitivity simulations with EMAC corroborate the nearly equal net effects of the present-day CH4 and CO burdens in removing tropospheric OH, as well as the large turnover and stability of the abundance of the latter. The simulated CO isotopologues nonetheless hint at a likely insufficient OH regeneration in the NH high latitudes and the upper troposphere / lower stratosphere (UTLS).rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZusammenfassungDie Analyse von Isotopenverhältnissen ist von wachsender Bedeutung bei der Untersuchung von Quellen, Senken und chemischen Reaktionswegen atmosphärischer Spurengase. Distickstoffoxid (N2O) hat vier isotopisch einfach substituierte Spezies: 14N15N16O, 15N14N16O, 14N217O und 14N218O. In der vorliegenden Arbeit wurden massenspektrometrische Methoden entwickelt, die eine komplette Charakterisierung der Variationen im Vorkommen dieser Spezies ermöglichen. Es wird die bisher umfassendste Darstellung dieser Variationen in Troposphäre und Stratosphäre gegeben und mit Bezug auf eine Reihe von Laborexperimenten detailliert interpretiert.Die Laborexperimente machen einen großen Anteil dieser Doktorarbeit aus und konzentrieren sich auf die Isotopenfraktionierung in den stratosphärischen N2O-Senken, d. h. Photolyse und Reaktion mit elektronisch angeregten Sauerstoffatomen, O(1D). Diese Prozesse sind von dominantem Einfluß auf die Isotopenzusammensetzung von atmosphärischem N2O. Potentiell wichtige Parameter wie Temperatur- und Druckvariationen, aber auch Veränderungen der Wellenlänge im Fall der Photolyse wurden berücksichtigt. Photolyse bei stratosphärisch relevanten Wellenlängen > 190 nm zeigte immer Anreicherungen von 15N in beiden Stickstoffatomen des verbleibenden N2O wie auch in 17O und 18O. Die Anreicherungen waren am mittelständigen N-Atom signifikant höher als am endständigen N (mit mittleren Werten für 18O) und stiegen zu größeren Wellenlängen und niedrigeren Temperaturen hin an. Erstmalig wurden für 18O und 15N am endständigen N-Atom Isotopenabreicherungen bei 185 nm-Photolyse festgestellt. Im Gegensatz zur Photolyse waren die Isotopenanreicherungen bei der zweiten wichtigen N2O-Senke, Reaktion mit O(1D) vergleichsweise gering. Jedoch war das positionsabhängige Fraktionierungsmuster dem der Photolyse direkt entgegengesetzt und zeigte größere Anreicherungen am endständigen N-Atom. Demgemäß führen beiden Senkenprozesse zu charakteristischen Isotopensignaturen in stratosphärischem N2O. Weitere N2O-Photolyseexperimente zeigten, daß 15N216O in der Atmosphäre höchstwahrscheinlich mit der statistisch zu erwartenden Häufigkeit vorkommt.Kleine stratosphärische Proben erforderten die Anpassung der massenspektrometrischen Methoden an Permanentflußtechniken, die auch für Messungen an Firnluftproben von zwei antarktischen Stationen verwendet wurden. Das 'Firnluftarchiv' erlaubte es, den gegenwärtigen Trend und die präindustriellen Werte der troposphärischen N2O-Isotopensignatur zu bestimmen. Ein daraus konstruiertes globales N2O-Isotopenbudget ist im Einklang mit den besten Schätzungen der Gesamt-N2O-Emissionen aus Böden und Ozeanen.17O-Messungen bestätigten die Sauerstoffisotopenanomalie in atmosphärischem N2O, zeigten aber auch, daß N2O-Photolyse die Sauerstoffisotope gemäß einem massenabhängigen Fraktionierungsgesetz anreichert. Eine troposphärische Ursache für einen Teil des Exzeß-17O wurde vorgeschlagen, basierend auf der Reaktion von NH2 mit NO2, wodurch die Sauerstoffisotopenanomalie von O3 über NO2 an N2O übertragen wird.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global observations of the chemical composition of the atmosphere are essential for understanding and studying the present and future state of the earth's atmosphere. However, by analyzing field experiments the consideration of the atmospheric motion is indispensable, because transport enables different chemical species, with different local natural and anthropogenic sources, to interact chemically and so consequently influences the chemical composition of the atmosphere. The distance over which that transport occurs is highly dependent upon meteorological conditions (e.g., wind speed, precipitation) and the properties of chemical species itself (e.g., solubility, reactivity). This interaction between chemistry and dynamics makes the study of atmospheric chemistry both difficult and challenging, and also demonstrates the relevance of including the atmospheric motions in that context. In this doctoral thesis the large-scale transport of air over the eastern Mediterranean region during summer 2001, with a focus on August during the Mediterranean Intensive Oxidant Study (MINOS) measurement campaign, was investigated from a lagrangian perspective. Analysis of back trajectories demonstrated transport of polluted air masses from western and eastern Europe in the boundary layer, from the North Atlantic/North American area in the middle end upper troposphere and additionally from South Asia in the upper troposphere towards the eastern Mediterranean. Investigation of air mass transport near the tropopause indicated enhanced cross-tropopause transport relative to the surrounding area over the eastern Mediterranean region in summer. A large band of air mass transport across the dynamical tropopause develops in June, and is shifted toward higher latitudes in July and August. This shifting is associated with the development and the intensification of the Arabian and South Asian upper-level anticyclones and consequential with areas of maximum clear-air turbulence, hypothesizing quasi-permanent areas with turbulent mixing of tropospheric and stratospheric air during summer over the eastern Mediterranean as a result of large-scale synoptic circulation. In context with the latex knowledge about the transport of polluted air masses towards the Mediterranean and with increasing emissions, especially in developing countries like India, this likely gains in importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The land-atmosphere exchange of atmospheric trace gases is sensitive to meteorological conditions and climate change. It contributes in turn to the atmospheric radiative forcing through its effects on tropospheric chemistry. The interactions between the hydrological cycle and atmospheric processes are intricate and often involve different levels of feedbacks. The Earth system model EMAC is used in this thesis to assess the direct role of the land surface components of the terrestrial hydrological cycle in the emissions, deposition and transport of key trace gases that control tropospheric chemistry. It is also used to examine its indirect role in changing the tropospheric chemical composition through the feedbacks between the atmospheric and the terrestrial branches of the hydrological cycle. Selected features of the hydrological cycle in EMAC are evaluated using observations from different data sources. The interactions between precipitation and the water vapor column, from the atmospheric branch of the hydrological cycle, and evapotranspiration, from its terrestrial branch, are assessed specially for tropical regions. The impacts of changes in the land surface hydrology on surface exchanges and the oxidizing chemistry of the atmosphere are assessed through two sensitivity simulations. In the first, a new parametrization for rainfall interception in the densely vegetated areas in the tropics is implemented, and its effects are assessed. The second study involves the application of a soil moisture forcing that replaces the model calculated soil moisture. Both experiments have a large impact on the local hydrological cycle, dry deposition of soluble and insoluble gases, emissions of isoprene through changes in surface temperature and the Planetary Boundary Layer height. Additionally the soil moisture forcing causes changes in local vertical transport and large-scale circulation. The changes in trace gas exchanges affect the oxidation capacity of the atmosphere through changes in OH, O$_3$, NO$_x$ concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inspired by the need for a representation of the biomass burning emissions injection height in the ECHAM/MESSy Atmospheric Chemistry model (EMAC)