16 resultados para AB INITIO CALCULATIONS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Germaniumdioxid (GeO2) ist ein Glasbildner, der wie das homologe SiO2 ein ungeordnetes tetraedrisches Netzwerk ausbildet. In dieser Arbeit werden mit Hilfe von Molekulardynamik-Computersimulationen die Struktur und Dynamik von GeO2 in Abhängigkeit von der Temperatur untersucht. Dazu werden sowohl Simulationen mit einem klassischen Paarpotentialmodell von Oeffner und Elliott als auch ab initio-Simulationen gemäß der Car-Parrinello-Molekulardynamik (CPMD), bei der elektronische Freiheitsgrade mittels Dichtefunktionaltheorie beschrieben werden, durchgeführt. In der klassischen Simulation werden dazu ein Temperaturen zwischen 6100 K und 2530 K betrachtet. Darüberhinaus ermöglichen Abkühlläufe auf T=300 K das Studium der Struktur des Glases. Zum Vergleich werden CPMD-Simulationen für kleinere Systeme mit 60 bzw. 120 Teilchen bei den Temperaturen 3760 K und 3000 K durchgeführt. In den klassischen Simulationen kann die im Experiment bis 1700 K nachgewiesene, im Vergleich zu SiO2 starke, Temperaturabhängigkeit der Dichte auch bei höheren Temperaturen beobachtet werden. Gute Übereinstimmungen der Simulationen mit experimentellen Daten zeigen sich bei der Untersuchung verschiedener struktureller Größen, wie z.B. Paarkorrelationsfunktionen, Winkelverteilungen, Koordinationszahlen und Strukturfaktoren. Es können leichte strukturelle Abweichungen der CPMD-Simulationen von den klassischen Simulationen aufgezeigt werden: 1. Die Paarabstände in CPMD sind durchweg etwas kleiner. 2. Es zeigt sich, daß die Bindungen in den ab initio-Simulationen weicher sind, was sich auch in einer etwas stärkeren Temperaturabhängigkeit der strukturellen Größen im Vergleich zu den klassischen Simulationen niederschlägt. 3. Für CPMD kann ein vermehrtes Auftreten von Dreierringstrukturen gezeigt werden. 4. In der CPMD werden temperaturabhängige Defektstrukturen in Form von Sauerstoffpaaren beobachtet, die vor allem bei 3760 K, kaum jedoch bei 3000 K auftreten. Alle strukturellen Unterschiede zwischen klassischer und CPMD-Simulation sind eindeutig nicht auf Finite-Size-Effekte aufgrund der kleinen Systemgrößen in den CPMD-Simulationen zurückzuführen, d.h. sie sind tatsächlich methodisch bedingt. Bei der Dynamik von GeO2 wird in den klassischen Simulationen ebenfalls eine gute Übereinstimmung mit experimentellen Daten beobachtet, was ein Vergleich der Diffusionskonstanten mit Viskositätsmessungen bei hohen Temperaturen belegt. Die Diffusionskonstanten zeigen teilweise ein verschiedenes Verhalten zum homologen SiO2. Sie folgen in GeO2 bei Temperaturen unter 3000 K einem Arrheniusgesetz mit einer deutlich niedrigeren Aktivierungsenergie. Darüberhinaus werden die Möglichkeiten der Parametrisierung eines neuen klassischen Paarpotentials mittels der Kräfte entlang der CPMD-Trajektorien untersucht. Es zeigt sich, daß derartige Parametrisierungen sehr stark von den gewählten Startparametern abhängen. Ferner führen sämtliche an die Schmelze parametrisierten Potentiale zu zu hohen Dichten im Vergleich zum Experiment. Zum einen liegt dies sehr wahrscheinlich daran,daß für das System GeO2 Kraftdaten allein nicht ausreichen, um grundlegende strukturelle Größen, wie z.B. Paarkorrelationen und Winkelverteilungen, der CPMD-Simulationen gut reproduzieren zu können. Zum anderen ist wohl die Beschreibung mittels Paarpotentialen nicht ausreichend und es ist erforderlich, Merkörperwechselwirkungen in Betracht zu ziehen.
Resumo:
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.
Resumo:
Development of empirical potentials for amorphous silica Amorphous silica (SiO2) is of great importance in geoscience and mineralogy as well as a raw material in glass industry. Its structure is characterized as a disordered continuous network of SiO4 tetrahedra. Many efforts have been undertaken to understand the microscopic properties of silica by classical molecular dynamics (MD) simulations. In this method the interatomic interactions are modeled by an effective potential that does not take explicitely into account the electronic degrees of freedom. In this work, we propose a new methodology to parameterize such a potential for silica using ab initio simulations, namely Car-Parrinello (CP) method [Phys. Rev. Lett. 55, 2471 (1985)]. The new potential proposed is compared to the BKS potential [Phys. Rev. Lett. 64, 1955 (1990)] that is considered as the benchmark potential for silica. First, CP simulations have been performed on a liquid silica sample at 3600 K. The structural features so obtained have been compared to the ones predicted by the classical BKS potential. Regarding the bond lengths the BKS tends to underestimate the Si-O bond whereas the Si-Si bond is overestimated. The inter-tetrahedral angular distribution functions are also not well described by the BKS potential. The corresponding mean value of theSiOSi angle is found to be ≃ 147◦, while the CP yields to aSiOSi angle centered around 135◦. Our aim is to fit a classical Born-Mayer/Coulomb pair potential using ab initio calculations. To this end, we use the force-matching method proposed by Ercolessi and Adams [Europhys. Lett. 26, 583 (1994)]. The CP configurations and their corresponding interatomic forces have been considered for a least square fitting procedure. The classical MD simulations with the resulting potential have lead to a structure that is very different from the CP one. Therefore, a different fitting criterion based on the CP partial pair correlation functions was applied. Using this approach the resulting potential shows a better agreement with the CP data than the BKS ones: pair correlation functions, angular distribution functions, structure factors, density of states and pressure/density were improved. At low temperature, the diffusion coefficients appear to be three times higher than those predicted by the BKS model, however showing a similar temperature dependence. Calculations have also been carried out on crystalline samples in order to check the transferability of the potential. The equilibrium geometry as well as the elastic constants of α-quartz at 0 K are well described by our new potential although the crystalline phases have not been considered for the parameterization. We have developed a new potential for silica which represents an improvement over the pair potentials class proposed so far. Furthermore, the fitting methodology that has been developed in this work can be applied to other network forming systems such as germania as well as mixtures of SiO2 with other oxides (e.g. Al2O3, K2O, Na2O).
Resumo:
Organische Ladungstransfersysteme weisen eine Vielfalt von konkurrierenden Wechselwirkungen zwischen Ladungs-, Spin- und Gitterfreiheitsgraden auf. Dies führt zu interessanten physikalischen Eigenschaften, wie metallische Leitfähigkeit, Supraleitung und Magnetismus. Diese Dissertation beschäftigt sich mit der elektronischen Struktur von organischen Ladungstransfersalzen aus drei Material-Familien. Dabei kamen unterschiedliche Photoemissions- und Röntgenspektroskopietechniken zum Einsatz. Die untersuchten Moleküle wurden z.T. im MPI für Polymerforschung synthetisiert. Sie stammen aus der Familie der Coronene (Donor Hexamethoxycoronen HMC und Akzeptor Coronen-hexaon COHON) und Pyrene (Donor Tetra- und Hexamethoxypyren TMP und HMP) im Komplex mit dem klassischen starken Akzeptor Tetracyanoquinodimethan (TCNQ). Als dritte Familie wurden Ladungstransfersalze der k-(BEDT-TTF)2X Familie (X ist ein monovalentes Anion) untersucht. Diese Materialien liegen nahe bei einem Bandbreite-kontrollierten Mottübergang im Phasendiagramm.rnFür Untersuchungen mittels Ultraviolett-Photoelektronenspektroskopie (UPS) wurden UHV-deponierte dünne Filme erzeugt. Dabei kam ein neuer Doppelverdampfer zum Einsatz, welcher speziell für Milligramm-Materialmengen entwickelt wurde. Diese Methode wies im Ladungstransferkomplex im Vergleich mit der reinen Donor- und Akzeptorspezies energetische Verschiebungen von Valenzzuständen im Bereich weniger 100meV nach. Ein wichtiger Aspekt der UPS-Messungen lag im direkten Vergleich mit ab-initio Rechnungen.rnDas Problem der unvermeidbaren Oberflächenverunreinigungen von lösungsgezüchteten 3D-Kristallen wurde durch die Methode Hard-X-ray Photoelectron Spectroscopy (HAXPES) bei Photonenenergien um 6 keV (am Elektronenspeicherring PETRA III in Hamburg) überwunden. Die große mittlere freie Weglänge der Photoelektronen im Bereich von 15 nm resultiert in echter Volumensensitivität. Die ersten HAXPES Experimente an Ladungstransferkomplexen weltweit zeigten große chemische Verschiebungen (mehrere eV). In der Verbindung HMPx-TCNQy ist die N1s-Linie ein Fingerabdruck der Cyanogruppe im TCNQ und zeigt eine Aufspaltung und einen Shift zu höheren Bindungsenergien von bis zu 6 eV mit zunehmendem HMP-Gehalt. Umgekehrt ist die O1s-Linie ein Fingerabdruck der Methoxygruppe in HMP und zeigt eine markante Aufspaltung und eine Verschiebung zu geringeren Bindungsenergien (bis zu etwa 2,5eV chemischer Verschiebung), d.h. eine Größenordnung größer als die im Valenzbereich.rnAls weitere synchrotronstrahlungsbasierte Technik wurde Near-Edge-X-ray-Absorption Fine Structure (NEXAFS) Spektroskopie am Speicherring ANKA Karlsruhe intensiv genutzt. Die mittlere freie Weglänge der niederenergetischen Sekundärelektronen (um 5 nm). Starke Intensitätsvariationen von bestimmten Vorkanten-Resonanzen (als Signatur der unbesetzte Zustandsdichte) zeigen unmittelbar die Änderung der Besetzungszahlen der beteiligten Orbitale in der unmittelbaren Umgebung des angeregten Atoms. Damit war es möglich, präzise die Beteiligung spezifischer Orbitale im Ladungstransfermechanismus nachzuweisen. Im genannten Komplex wird Ladung von den Methoxy-Orbitalen 2e(Pi*) und 6a1(σ*) zu den Cyano-Orbitalen b3g und au(Pi*) und – in geringerem Maße – zum b1g und b2u(σ*) der Cyanogruppe transferiert. Zusätzlich treten kleine energetische Shifts mit unterschiedlichem Vorzeichen für die Donor- und Akzeptor-Resonanzen auf, vergleichbar mit den in UPS beobachteten Shifts.rn
Resumo:
Durch die Möglichkeit, gleichzeitig mehrere Polarisationsfreiheitsgradernin der quasi-elastischen Elektronstreuung an $^3mathrm{He}$ zurnmessen, bietet sich ein neuer experimenteller Zugang zu kleinen, aber rnwichtigen Partialwellenbeiträgen ($S'$, $D$-Welle) desrn$^3mathrm{He}$-Grundzustands. Dies ermöglicht nicht nur ein tieferesrnVerständnis des Drei-Körper-Systems, sondern bietet auch diernMöglichkeit, Erkenntnisse über die $^3mathrm{He}$-Struktur undrnDynamik zu erlangen. Mit Hilfe dieser Informationen lassen sich abrninitio Rechnungen testen, sowie Korrekturen berechnen, die für anderernExperimente (z.B. Messung von $G_{en}$) benötigt werden. rnrnModerne Faddeev-Rechnungen liefern nicht nur eine quantitativernBeschreibung des $^3mathrm{He}$-Grundzustands, sondern geben auchrneinen Einblick in die sogenannten spinabhängigenrnImpulsverteilungen. Eine gründliche experimentelle Untersuchung ist in rndiesem Zusammenhang nötig, um eine solide Basis für die Üperprüfungrnder theoretische Modelle zu liefern. EinrnDreifach-Polarisationsexperiment liefert hier zum einen wichtigernDaten, zum anderen kann damit untersucht werden, ob mit der Methoderndes glqq Deuteron-Tagginggrqq polarisiertes $^3mathrm{He}$ alsrneffektives polarisiertes Protonentarget verwendet werden kann. rnrnDas hier vorgestellte Experiment kombiniert erstmals Strahl- undrnTargetpolarisation sowie die Messung der Polarisation des auslaufendenrnProtons. Das Experiment wurde im Sommer 2007 an derrnDrei-Spektrometer-Anlage der A1-Kollaboration an MAMI rndurchgeführt. Dabei wurde mit einer Strahlenergie vonrn$E=855,mathrm{MeV}$ bei $q^2=-0,14,(mathrm{GeV/c})^2$rn$(omega=0,13,mathrm{GeV}$, $q=0,4,mathrm{GeV/c})$ gemessen.rnrnDie bestimmten Wirkungsquerschnitte, sowie die Strahl-Target- und diernDreifach-Asymmetrie werden mit theoretischen Modellrechnungen vonrnJ. Golak (Plane Wave Impuls Approximation PWIA, sowie ein Modell mitrnEndzustandswechselwirkung) verglichen. Zudem wurde das Modell von dernForest verwendet, welches den Wirkungsquerschnitt über eine gemessenernSpektralfunktion berechnet. Der Vergleich mit den Modellrechnungenrnzeigt, dass sowohl der Wirkungsquerschnitt, als auch die Doppel- undrnDreifach-Asymmetrie gut mit den theoretischen Rechnungenrnübereinstimmen. rnrnDie Ergebnisse dieser Arbeit bestätigen, dass polarisiertesrn$^3mathrm{He}$ nicht nur als polarisiertes Neutronentarget, sondernrndurch Nachweis des Deuterons ebenfalls als polarisiertesrnProtonentarget verwendet werden kann.
Resumo:
This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn
Resumo:
In dieser Arbeit werden drei wasserstoffverbrückte Systeme in der kondensierten Phase mit Hilfe von first-principles-Elektronenstruktur-Rechnungen untersucht, die auf der Dichtefunktionaltheorie (DFT) unter periodischen Randbedingungen basieren. Ihre lokalen Konformationen und Wasserstoffbrückenbindungen werden mittels ab-initio Molekulardynamiksimulationen berechnet und weiterhin durch die Bestimmung ihrer spektroskopischen Parameter charakterisiert. Der Schwerpunkt liegt dabei auf lokalen Strukturen und auf schnellen Fluktuationen der Wasserstoffbrückenbindungen, welche von zentraler Bedeutung für die physikalischen und chemischen Eigenschaften der betrachteten Systeme sind. Die für die lokalen, instantanen Konformationen berechneten Spektren werden verwendet, um die physikalischen Prozesse, die hinter den untersuchten Phänomenen stehen, zu erklären: die Wasseradsorption auf metallischen Oberflächen, die Ionensolvatisierung in wässrigen Lösungen und der Protonentransport in protonleitenden Polymeren, welche Prototypen von Membranen für Brennstoffzellen sind. Die Möglichkeit der Vorhersage spektroskopischer Parameter eröffnet vielfältige Möglichkeiten des Dialogs zwischen Experimenten und numerischen Simulationen. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, dass die Zuverlässigkeit dieser theoretischen Berechnungen inzwischen für viele experimentell relevante Systeme ein quantitatives Niveau erreicht hat.
Resumo:
Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
The only nuclear model independent method for the determination of nuclear charge radii of short-lived radioactive isotopes is the measurement of the isotope shift. For light elements (Z < 10) extremely high accuracy in experiment and theory is required and was only reached for He and Li so far. The nuclear charge radii of the lightest elements are of great interest because they have isotopes which exhibit so-called halo nuclei. Those nuclei are characterized by a a very exotic nuclear structure: They have a compact core and an area of less dense nuclear matter that extends far from this core. Examples for halo nuclei are 6^He, 8^He, 11^Li and 11^Be that is investigated in this thesis. Furthermore these isotopes are of interest because up to now only for such systems with a few nucleons the nuclear structure can be calculated ab-initio. In the Institut für Kernchemie at the Johannes Gutenberg-Universität Mainz two approaches with different accuracy were developed. The goal of these approaches was the measurement of the isotope shifts between (7,10,11)^Be^+ and 9^Be^+ in the D1 line. The first approach is laser spectroscopy on laser cooled Be^+ ions that are trapped in a linear Paul trap. The accessible accuracy should be in the order of some 100 kHz. In this thesis two types of linear Paul traps were developed for this purpose. Moreover, the peripheral experimental setup was simulated and constructed. It allows the efficient deceleration of fast ions with an initial energy of 60 keV down to some eV and an effcient transport into the ion trap. For one of the Paul traps the ion trapping could already be demonstrated, while the optical detection of captured 9^Be^+ ions could not be completed, because the development work was delayed by the second approach. The second approach uses the technique of collinear laser spectroscopy that was already applied in the last 30 years for measuring isotope shifts of plenty of heavier isotopes. For light elements (Z < 10), it was so far not possible to reach the accuracy that is required to extract information about nuclear charge radii. The combination of collinear laser spectroscopy with the most modern methods of frequency metrology finally permitted the first-time determination of the nuclear charge radii of (7,10)^Be and the one neutron halo nucleus 11^Be at the COLLAPS experiment at ISOLDE/ CERN. In the course of the work reported in this thesis it was possible to measure the absolute transition frequencies and the isotope shifts in the D1 line for the Be isotopes mentioned above with an accuracy of better than 2 MHz. Combination with the most recent calculations of the mass effect allowed the extraction of the nuclear charge radii of (7,10,11)^Be with an relative accuracy better than 1%. The nuclear charge radius decreases from 7^Be continuously to 10^Be and increases again for 11^Be. This result is compared with predictions of ab-initio nuclear models which reproduce the observed trend. Particularly the "Greens Function Monte Carlo" and the "Fermionic Molecular Dynamic" model show very good agreement.
Resumo:
In dieser Arbeit werden vier unterschiedliche, stark korrelierte, fermionische Mehrbandsysteme untersucht. Es handelt sich dabei um ein Mehrstörstellen-Anderson-Modell, zwei Hubbard-Modelle sowie ein Mehrbandsystem, wie es sich aus einer ab initio-Beschreibung für ein korreliertes Halbmetall ergibt.rnrnDie Betrachtung des Mehrstörstellen-Anderson-Modells konzentriert sich auf die Untersuchung des Einflusses der Austauschwechselwirkung und der nicht-lokalen Korrelationen zwischen zwei Störstellen in einem einfach-kubischen Gitter. Das zentrale Resultat ist die Abstandsabhängigkeit der Korrelationen der Störstellenelektronen, welche stark von der Gitterdimension und der relativen Position der Störstellen abhängen. Bemerkenswert ist hier die lange Reichweite der Korrelationen in der Diagonalrichtung des Gitters. Außerdem ergibt sich, dass eine antiferromagnetische Austauschwechselwirkung ein Singulett zwischen den Störstellenelektronen gegenüber den Kondo-Singuletts der einzelnen Störstellen favorisiert und so den Kondo-Effekt der einzelnen Störstellen behindert.rnrnEin Zweiband-Hubbard-Modell, das Jz-Modell, wird im Hinblick auf seine Mott-Phasen in Abhängigkeit von Dotierung und Kristallfeldaufspaltung auf dem Bethe-Gitter untersucht. Die Entartung der Bänder ist durch eine unterschiedliche Bandbreite aufgehoben. Wichtigstes Ergebnis sind die Phasendiagramme in Bezug auf Wechselwirkung, Gesamtfüllung und Kristallfeldparameter. Im Vergleich zu Einbandmodellen kommen im Jz-Modell sogenannte orbital-selektive Mott-Phasen hinzu, die, abhängig von Wechselwirkung, Gesamtfüllung und Kristallfeldparameter, einerseits metallischen und andererseits isolierenden Charakter haben. Ein neuer Aspekt ergibt sich durch den Kristallfeldparameter, der die ionischen Einteilchenniveaus relativ zueinander verschiebt, und für bestimmte Werte eine orbital-selektive Mott-Phase des breiten Bands ermöglicht. Im Vergleich mit analytischen Näherungslösungen und Einbandmodellen lassen sich generische Vielteilchen- und Korrelationseffekte von typischen Mehrband- und Einteilcheneffekten differenzieren.rnrnDas zweite untersuchte Hubbard-Modell beschreibt eine magneto-optische Falle mit einer endlichen Anzahl Gitterplätze, in welcher fermionische Atome platziert sind. Es wird eine z-antiferromagnetische Phase unter Berücksichtigung nicht-lokaler Vielteilchenkorrelationen erhalten, und dabei werden bekannte Ergebnisse einer effektiven Einteilchenbeschreibung verbessert.rnrnDas korrelierte Halbmetall wird im Rahmen einer Mehrbandrechnung im Hinblick auf Korrelationseffekte untersucht. Ausgangspunkt ist eine ab initio-Beschreibung durch die Dichtefunktionaltheorie (DFT), welche dann durch die Hinzunahme lokaler Korrelationen ergänzt wird. Die Vielteilcheneffekte werden an Hand einer einfachen Wechselwirkungsnäherung verdeutlicht, und für ein Wechselwirkungsmodell in sphärischer Symmetrie präzisiert. Es ergibt sich nur eine schwache Quasiteilchenrenormierung. Besonders für röntgenspektroskopische Experimente wird eine gute Übereinstimmung erzielt.rnrnDie numerischen Ergebnisse für das Jz-Modell basieren auf Quanten-Monte-Carlo-Simulationen im Rahmen der dynamischen Molekularfeldtheorie (DMFT). Für alle anderen Systeme wird ein Mehrband-Algorithmus entwickelt und implementiert, welcher explizit nicht-diagonale Mehrbandprozesse berücksichtigt.rnrn
Resumo:
Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e.g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e.g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8-hydroxyquinoline)aluminium (Alq3). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq3, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated mobilities depend strongly on the system size. A method for extrapolating calculated mobilities to the infinite system size is proposed, allowing direct comparison of simulation results and time-of-flight experiments. The extracted value of the nondispersive hole mobility and its electric field dependence for amorphous Alq3 agree well with the experimental results.
Resumo:
CIGS-Dünnschichtsolarzellen verbinden hohe Effizienz mit niedrigen Kosten und sind damit eine aussichtsreiche Photovoltaik-Technologie. Das Verständnis des Absorbermaterials CIGS ist allerdings noch lückenhaft und benötigt weitere Forschung. In dieser Dissertation werden Computersimulationen vorgestellt, die erheblich zum besseren Verständnis von CIGS beitragen. Es wurden die beiden Systeme Cu(In,Ga)Se2 und (Cu,In,Vac)Se betrachtet. Die Gesamtenergie der Systeme wurde in Clusterentwicklungen ausgedrückt, die auf der Basis von ab initio Dichtefunktionalrechnungen erstellt wurden. Damit war es möglich Monte Carlo (MC)-Simulationen durchzuführen. Kanonische MC-Simulationen von Cu(In,Ga)Se2 zeigen das temperaturabhängige Verhalten der In-Ga-Verteilung. In der Nähe der Raumtemperatur findet ein Übergang von einer geordneten zu einer ungeordneten Phase statt. Unterhalb separiert das System in CuInSe2 und CuGaSe2. Oberhalb existiert eine gemischte Phase mit inhomogen verteilten In- und Ga-Clustern. Mit steigender Temperatur verkleinern sich die Cluster und die Homogenität nimmt zu. Bei allen Temperaturen, bis hin zur Produktionstemperatur der Solarzellen (¼ 870 K), ist In-reiches CIGS homogener als Ga-reiches CIGS. Das (Cu,In,Vac)Se-System wurde mit kanonischen und großkanonischen MC-Simulationen untersucht. Hier findet sich für das CuIn5Se8-Teilsystem ein Übergang von einer geordneten zu einer ungeordneten Phase bei T0 = 279 K. Großkanonische Simulationen mit vorgegebenen Werten für die chemischen Potentiale von Cu und In wurden verwendet, um die Konzentrations- Landschaft und damit die sich ergebenden Stöchiometrien zu bestimmen. Stabilitätsbereiche wurden für stöchiometrisches CuInSe2 und für die Defektphasen CuIn5Se8 und CuIn3Se5 bei einer Temperatur von 174 K identifiziert. Die Bereiche für die Defektphasen sind bei T = 696 K verschwunden. Die Konzentrations-Landschaft reproduziert auch die leicht Cu-armen Stöchiometrien, die bei Solarzellen mit guten Effizienzen experimentell beobachtet werden. Die Simulationsergebnisse können verwendet werden, um den industriellen CIGS-Produktionspr
Resumo:
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. \\rnThe only known theoretical, non-perturbative and {\it ab initio} method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations.rnrnThis thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses.\\rnFirst of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be $m_{ud}^{\overline{\text{MS}}}(2\text{ GeV}) = 3.03(17)(38)\text{ MeV}$. This value is in good agreement with values from experiments and other lattice determinations.\\rnElectro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass.\newpage Finally we perform a continuum extrapolation and chiral extrapolations to the physical point.\\rnIn addition, we investigated so called excited state contributions to these observables. A technique was used, the summation method, which reduces these effects significantly and a much better agreement with experimental data was achieved. On the lattice, the Dirac radius and the axial charge are usually found to be much smaller than the experimental values. However, due to the carefully investigation of all the afore-mentioned systematic effects we get $\langle r_1^2\rangle_{u-d}=0.627(54)\text{ fm}^2$ and $g_A=1.218(92)$, which is in agreement with the experimental values within the errors.rnrnThe first three chapters introduce the theoretical background of form factors of the nucleon and lattice QCD in general. In chapter four the lattice spacing is determined. The computation of nucleon form factors is described in chapter five where systematic effects are investigated. All results are presented in chapter six. The thesis ends with a summary of the results and identifies options to complement and extend the calculations presented. rn
Resumo:
Diese Dissertation ist in zwei Teile aufgeteilt: Teil 1 befasst sich mit der Vorhersage von Halb-Metallizität in quarternären Heuslerverbindungen und deren Potential für Spintronik-Anwendungen. Teil 2 befasst sich mit den strukturellen Eigenschaften der Mn2-basierenden Heuslerverbindungen und dem Tuning von ihrer magnetischen Eigenschaften bzgl. Koerzitivfeldstärke und Remanenz. Diese Verbindungen sind geeignet für Spin-Transfer Torque-Anwendungen.rnrnIn Teil 1 wurden die folgenden drei Probenserien quarternärer Heuslerverbindungen untersucht: XX´MnGa (X = Cu, Ni und X´ = Fe, Co), CoFeMnZ (Z = Al, Ga, Si, Ge) und Co2−xRhxMnZ (Z = Ga, Sn, Sb). Abgesehen von CuCoMnGa wurden alle diese Verbindungen mittels ab-initio Bandstrukturrechnungen als halbmetallische Ferromagnete prognostiziert. In der XX´MnGa-Verbindungsklasse besitzt NiFeMnGa zwar eine zu niedrige Curie-Temperatur für technologische Anwendungen, jedoch NiCoMnGa mit seiner hohen Spinpolarisation, einem hohen magnetischen Moment und einer hohen Curie-Temperatur stellt ein neues Material für Spintronik-Anwendungen dar. Alle CoFeMnZ-Verbindungen kristallisieren in der kubischen Heuslerstruktur und ihre magnetischen Momente folgen der Slater-Pauling-Regel, was Halbmetalizität und eine hohe Spinpolarisation impliziert. Die ebenfalls hohen Curie-Temperaturen ermöglichen einen Einsatz weit über Raumtemperatur hinaus. In der strukturellen Charakterisierung wurde festgestellt, dass sämtliche Co2−xRhxMnZ abgesehen von CoRhMnSn verschiedene Typen von Unordnung aufweisen; daher war die ermittelte Abweichung von der Slater-Pauling-Regel sowie von der 100%-igen Spinpolarisation dieser Verbindungen zu erwarten. Die Halbmetallizität der geordneten CoRhMnSn-Verbindung sollte nach den durchgeführten magnetischen Messungen vorhanden sein.rnrnIm zweiten Teil wurden Mn3−xCoxGa und Mn2−xRh1+xSn synthetisiert und charakterisiert. Es wurde gezeigt, dass Mn3−xCoxGa im Bereich x = 0.1 − 0.4 in einer tetragonal verzerrten inversen Heuslerstruktur kristallisiert und im Bereich x = 0.6−1 in einer kubisch inversen Heuslerstruktur. Während die tetragonalen Materialien hartmagnetisch sind und Charakeristika aufweisen, die typischerweise für Spin-Transfer Torque-Anwengungen attraktiv sind, repräsentieren die weichmagnetischen kubischen Vertreter die 100% spinpolarisierten Materialien, die der Slater-Pauling-Regel folgen. Mn2RhSn kristallisiert in der inversen tetragonal verzerrten Heuslerstruktur, weist einernhartmagnetische Hystereseschleife auf und folgt nicht der Slater-Pauling-Regel. Bei hohen Rh-Gehalt wird die kubische inverse Heuslerstruktur gebildet. Alle kubischen Proben sind weichmagnetisch und folgen der Slater-Pauling-Regel.