25 resultados para Chemical-Reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cooperative motion algorithm was applied on the molecular simulation of complex chemical reactions and macromolecular orientation phenomena in confined geometries. First, we investigated the case of equilibrium step-growth polymerization in lamellae, pores and droplets. In such systems, confinement was quantified as the area/volume ratio. Results showed that, as confinement increases, polymerization becomes slower and the average molecular weight (MW) at equilibrium decreases. This is caused by the sterical hindrance imposed by the walls since chain growth reactions in their close vicinity have less realization possibilities. For reactions inside droplets at surfaces, contact angles usually increased after polymerization to compensate conformation restrictions imposed by confinement upon growing chains. In a second investigation, we considered monodisperse and chemically inert chains and focused on the effect of confinement on chain orientation. Simulations of thin polymer films showed that chains are preferably oriented parallel to the surface. Orientation increases as MW increases or as film thickness d decreases, in qualitative agreement with experiments with low MW polystyrene. It is demonstrated that the orientation of simulated chains results from a size effect, being a function of the ratio between chain end-to-end distance and d. This study was complemented by experiments with thin films of pi-conjugated polymers like MEH-PPV. Anisotropic refractive index measurements were used to analyze chain orientation. With increasing MW, orientation is enhanced. However, for MEH-PPV, orientation does not depend on d even at thicknesses much larger than the chain contour length. This contradiction with simulations was discussed by considering additional causes for orientation, for instance the appearance of nematic-like ordering in polymer films. In another investigation, we simulated droplet evaporation at soluble surfaces and reproduced the formation of wells surrounded by ringlike deposits at the surface, as observed experimentally. In our simulations, swollen substrate particles migrate to the border of the droplet to minimize the contact between solvent and vacuum, which costs the most energy. Deposit formation in the beginning of evaporation results in pinning of the droplet. When polymer chains at the substrate surface have strong uniaxial orientation, the resulting pattern is no longer similar to a ring but to a pair of half-moons. In a final stage, as an extension for the model developed for polymerization in nanoreactors, we studied the effect of geometrical confinement on a hypothetical oscillating reaction following the mechanism of the so called periodically forced Brusselator. It was shown that a reaction which is chaotic in the bulk may be driven to periodicity by confinement and vice-versa, opening new perspectives for chaos control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ein eindimensionales numerisches Modell der maritimenGrenzschicht (MBL) wurde erweitert, um chemische Reaktionenin der Gasphase, von Aerosolpartikeln und Wolkentropfen zu beschreiben. Ein Schwerpunkt war dabei die Betrachtung derReaktionszyklen von Halogenen. Soweit Ergebnisse vonMesskampagnen zur Verfuegung standen, wurden diese zurValidierung des Modells benutzt. Die Ergebnisse von frueheren Boxmodellstudien konntenbestaetigt werden. Diese zeigten die saeurekatalysierteAktivierung von Brom aus Seesalzaerosolen, die Bedeutung vonHalogenradikalen fuer die Zerstoerung von O3, diepotentielle Rolle von BrO bei der Oxidation von DMS und dievon HOBr und HOCl in der Oxidation von S(IV). Es wurde gezeigt, dass die Beruecksichtigung derVertikalprofile von meteorologischen und chemischen Groessenvon grosser Bedeutung ist. Dies spiegelt sich darin wider,dass Maxima des Saeuregehaltes von Seesalzaerosolen und vonreaktiven Halogenen am Oberrand der MBL gefunden wurden.Darueber hinaus wurde die Bedeutung von Sulfataerosolen beidem aktiven Recyceln von weniger aktiven zu photolysierbarenBromspezies gezeigt. Wolken haben grosse Auswirkungen auf die Evolution und denTagesgang der Halogene. Dies ist nicht auf Wolkenschichtenbeschraenkt. Der Tagesgang der meisten Halogene ist aufgrundeiner erhoehten Aufnahme der chemischen Substanzen in die Fluessigphase veraendert. Diese Ergebnisse betonen dieWichtigkeit der genauen Dokumentation der meteorologischenBedingungen bei Messkampagnen (besonders Wolkenbedeckungsgrad und Fluessigwassergehalt), um dieErgebnisse richtig interpretieren und mit Modellresultatenvergleichen zu koennen. Dieses eindimensionale Modell wurde zusammen mit einemBoxmodell der MBL verwendet, um die Auswirkungen vonSchiffemissionen auf die MBL abzuschaetzen, wobei dieVerduennung der Abgasfahne parameterisiert wurde. DieAuswirkungen der Emissionen sind am staerksten, wenn sie insauberen Gebieten stattfinden, die Hoehe der MBL gering istund das Einmischen von Hintergrundluft schwach ist.Chemische Reaktionen auf Hintergrundaerosolen spielen nureine geringe Rolle. In Ozeangebieten mit schwachemSchiffsverkehr sind die Auswirkungen auf die Chemie der MBL beschraenkt. In staerker befahrenen Gebieten ueberlappensich die Abgasfahnen mehrerer Schiffe und sorgen fuerdeutliche Auswirkungen. Diese Abschaetzung wurde mitSimulationen verglichen, bei denen die Emissionen alskontinuierliche Quellen behandelt wurden, wie das inglobalen Chemiemodellen der Fall ist. Wenn die Entwicklungder Abgasfahne beruecksichtigt wird, sind die Auswirkungendeutlich geringer da die Lebenszeit der Abgase in der erstenPhase nach Emission deutlich reduziert ist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zusammenfassung Ein 3-dimensionales globales Modell der unterenAtmosphäre wurde für die Untersuchung derOzonchemie, sowie der Chemie des Hydroxylradikals (OH) undwichtiger Vorläufersubstanzen, wie reaktiverStickstoffverbindungen und Kohlenwasserstoffe, verwendet.Hierfür wurde die Behandlung vonNicht-Methan-Kohlenwasserstoffen (NMKW) hinzugefügt,was auch die Entwicklung einer vereinfachten Beschreibungihrer Chemie, sowie die Erfassung von Depositionsprozessenund Emissionen erforderte. Zur Lösung der steifengewöhnlichen Differentialgleichungen der Chemie wurdeeine schnelles Rosenbrock-Verfahren eingesetzt, das soimplementiert wurde, dass die Modell-Chemie fürzukünftige Studien leicht abgeändert werden kann. Zur Evaluierung des Modells wurde ein umfangreicherVergleich der Modellergebnisse mit Bodenmessungen, sowieFlugzeug-, Sonden- und Satelliten-Daten durchgeführt.Das Modell kann viele Aspekte der Beobachtungen derverschieden Substanzen realistisch wiedergeben. Es wurdenjedoch auch einige Diskrepanzen festgestellt, die Hinweiseauf fehlerhafte Emissionsfelder oder auf die Modell-Dynamikund auch auf fehlende Modell-Chemie liefern. Zur weiteren Untersuchung des Einflusses verschiedenerStoffgruppen wurden drei Läufe mit unterschiedlichkomplexer Chemie analysiert. Durch das Berücksichtigender NMKW wird die Verteilung mehrerer wichtiger Substanzensignifikant beeinflusst, darunter z.B. ein Anstieg desglobalen Ozons. Es wurde gezeigt, dass die biogene SubstanzIsopren etwa die Hälfte des Gesamteffekts der NMKWausmachte (mehr in den Tropen, weniger anderswo). In einer Sensitivitätsstudie wurden die Unsicherheitenbei der Modellierung von Isopren weitergehend untersucht.Dabei konnte gezeigt werden, dass die Unsicherheit beiphysikalischen Aspekten (Deposition und heterogene Prozesse)ebenso groß sein kann, wie die aus dem chemischenGasphasen-Mechanismus stammende, welche zu globalbedeutsamen Abweichungen führte. Lokal können sichnoch größere Abweichungen ergeben. Zusammenfassend kann gesagt werden, dass die numerischenStudien dieser Arbeit neue Einblicke in wichtige Aspekte derPhotochemieder Troposphäre ergaben und in Vorschläge fürweiter Studien mündeten, die die wichtigsten gefundenenUnsicherheiten weiter verringern könnten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Untersuchungen zu ionenchemischen Reaktionen und Mobilitätsmessungen an schweren Elementen in einer Puffergaszelle Die vorgelegte Arbeit beschreibt vorbereitende Untersuchungen zu ionenchemischen Reaktionen und Mobilitätsmessungen schwerer Elemente (Z>100) in einer mit Argon gefüllten Puffergaszelle. Dazu wurden am Element Erbium (Z=68), dem chemischen Homolog von Fermium (Z=100), zunächst in einem Fourier-Transformations-Massenspektrometer (FT/MS) Reaktionen mit Sauerstoff (O2), Methan (CH4) und Butylen (C4H8) untersucht und deren Reaktionskonstanten zu k(Er+O2)=(3,6±0,3)•10-10cm3/s, k(Er+C4H8)=(1,3±0,1)•10-10cm3/s gemessen. Für die Reaktion Er++CH4 wurde eine Obergrenze der Reaktionskonstante von k(Er+CH4)?,3•10-15cm3/s bestimmt. Dieselben Reaktionen wurden anschließend in einer mit 60 mbar Argon gefüllten Puffergaszelle am Tandembeschleuniger des Max-Planck-Instituts für Kernphysik in Heidelberg studiert.Das in die Zelle eingeschossene Erbium wurde nach der Thermalisierung in einem zweistufigen Laserprozess resonant ionisiert. Diese Messungen führten zu gleichen Ergebnissen wie die FT/MS-Messungen (k(Er+O2)=3,3±0,4)•10-10cm3/s, k(Er+CH4)?2•10-17cm3/s). Die Reaktion von Erbium mit Butylen wurde ebenfalls beobachtet, eine Reaktionskonstante konnte jedoch nicht bestimmt werden. Die Reaktion von Erbium mit Sauerstoff wurde auch mit den direkt in die Puffergaszelle eingeschossenen Ionen ohne Laserionisation untersucht. Eine reproduzierbare Reaktionskonstante konnte nicht bestimmt werden, mögliche Ursachen werden diskutiert.Aus der Driftzeit der Ionen im Puffergas können Ionenmobilitäten bestimmt werden. Dies erlaubt Rückschlüsse auf die Ionenradien und damit auch auf Bindungslängen in Molekülen. Zwischen Plutonium und Americium wurde bei einer Driftzeit von (1,88±0,01) ms ein Driftzeitunterschied von (0,07±0,02) ms gemessen und daraus eine relative Verringerung des Ionenradius von Americium gegenüber dem von Plutonium um (3,1±1,3)% bestimmt. Relativistische Rechnungen sagen für den atomaren Radius von Americium gegenüber Plutonium eine Kontraktion in gleicher Größenordnung voraus; für Ionenradien existieren zur Zeit noch keine Rechnungen. Aus den gemessenen Driftzeiten des Plutoniums von (1,85±0,01) ms und Plutoniumoxids von (2,38±0,01) ms wurde eine Zunahme des Ionenradius des Plutoniumoxids gegenüber dem Plutonium um (28±2)% bestimmt.Außerdem wurden Reaktionen von Ruthenium (Z=44) und Osmium (Z=76), beides chemische Homologe von Hassium (Z=108), mit Sauerstoff in der FT/MS-Apparatur untersucht, mit dem Ziel widersprüchliche Messungen der Reaktionskonstanten aufzuklären.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H2O and HNO3 redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been improved, e.g. a method for the assimilation of meteorological analysis data in the general circulation model, the liquid PSC particle composition scheme, and the calculation of heterogeneous reaction rate coefficients. The interplay of these model components is demonstrated in a simulation of stratospheric chemistry with the coupled general circulation model. Tests against recent satellite data show that the model successfully reproduces the Antarctic ozone hole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grundlage für die hier gezeigte Arbeit stellt die Eigenschaft von amphiphilen Blockcopolymeren dar immer den Block mit der niedrigsten Grenzflächenenergie zum angrenzenden Medium an die Oberfläche zu bringen. Durch einen Austausch des Mediums an der Grenzfläche zum Blockcopolymer kann eine Reorientierung erzwungen werden, wenn die Grenzflächenenergie des anderen Blocks nun die niedrigere Grenzflächenenergie besitzt. Dieses Verhalten von dünnen amphiphilen Blockcopolymerfilmen wurde zur Strukturierung von Oberflächen ausgenutzt und in nachfolgenden Synthesen weiter verstärkt. Um dies zu erreichen wurde das zur Strukturierung erforderliche Poly(4-Octylstyrol)block(4-hydroxystyrol) durch kontrollierte radikalische Polymerisationsmethode mit dem Tempo Unimer (2,2,6,6-Tetramethyl-1-1(1-phenyl-ethoxy)-piperidin) synthetisiert. Für die geplanten Reorientierungen und Modifizierungen von Oberflächen wurden dünne Filme durch Schleuderbeschichtung auf verschiedenen Substraten (Siliziumwafern, Glassubstraten und Goldoberflächen) hergestellt. Das Verhalten der Oberflächen von diesen Filmen wurde durch Kontaktwinkelmessungen untersucht. Auf diese Weise konnte gezeigt werden, dass die Oberfläche von Polymerfilmen nach der Präparation aus dem hydrophoben Block des Polymers gebildet wird. Durch Kontakt des Polymerfilms mit Wasser kann dieser zur Reorientierung gebracht werden, so dass der hydrophile Block des Polymers an der Oberfläche erscheint. Dieses Verhalten wurde zur Strukturierung mit softlithographischen Techniken genutzt. Dazu wurden hydrophil/hydrophob strukturierte Oberflächen durch Aufsetzen von hydrophoben PDMS-Stempeln, die Teile der Oberfläche selektiv abdeckten, und Einbringen von Wasser in die dabei entstehenden Kapillaren hergestellt. Dies ermöglichte es die Oberfläche selektiv im Größenbereich von 500nm bis zu 50µm zu strukturieren und an den reaktiven Bereichen Materialien, wie z.B. Kupfer, Titandioxid, Polyelektrolyte, photonische Kristalle und angegraftete Polymere, mit verschiedenen Methoden selektiv auf die Oberfläche aufzubringen. Um den Reorganisationsprozess der Oberfläche genauer zu studieren, wurde ein für diese Aufgabe besser geeignetes Polymer (Poly(Styrol)-block-poly(essigsäure-2-(2-(4-vinyl-phenoxy)-ethoxy)ethylester)) synthetisiert. Aus diesem Blockcopolymer wurden wieder dünne Filme durch Spincoaten hergestellt. Die Reorientierung dieses Polymers in 70°C warmen Wasser konnte durch Kontaktwinkelmessungen und NEXAFS Spektroskopie nachgewiesen werden. Mit Hilfe der NEXAFS Spektroskopie konnte festgestellt werden, dass die Geschwindigkeit der Reorientierung durch eine exponentielle Funktion beschrieben werden kann. Eine Auswertung der Geschwindigkeitskonstante für die Reorientierung einer hydrophilen zu einer hydrophoben Oberfläche des Polymers bei 60°C führt zu =75min. Aufgrund des exponentiellen Charakters der Reorientierung macht es den Anschein, dass die Reorientierung bei verschiedenen Reorientierungstemperaturen bis zu einem gewissen Grad erfolgt und dann stoppt. Eine weitere Reorientierung scheint erst wieder bei einer Temperaturerhöhung zu beginnen. Aus AFM Messungen ist ein Beginnen der Reorientierung durch Bildung kleiner Löcher in der Polymeroberfläche zu erkennen, die sich zu runden Erhöhungen und Vertiefungen vergrößern, um letztendlich in ein spinodales Entmischungsmuster über zu gehen. Dieses heilt dann im Laufe der Zeit langsam durch Verschwinden der hydrophilen Bereiche langsam aus. Der Beginn des zuvor beschriebenen Reorientierungsprozesses einer hydrophilen Oberfläche in eine hydrophobe konnte sowohl in den AFM, als auch in den NEXAFS-Messungen zu ca. 50°C bestimmt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der Vergangenheit wurde die Wichtigkeit von Iodverbindungen im Bezug auf die Aerosolbildung in Küstennähe wiederholt bestätigt. Durch Photolyse von flüchtigen iodorganischen Verbindungen (VOIs) können in der Atmosphäre Iodatome gebildet werden. Diese hochreaktiven Radikale wiederum können mit Ozon und/oder OH-Radikalen reagieren. Es werden so unter anderem schwerflüchtige Iodoxide gebildet, die in die Partikelphase übergehen können. Um ein Verständnis für die Mechanismen und chemischen Reaktionen zu bekommen, die zur Bildung von iodhaltigen Aerosolpartikeln führen, müssen auch Vorläufersubstanzen qualitativ und quanitativ bestimmt werden. Ob diese Reaktionen und chemischen Verbindungen auch über dem offenen Ozean einen Beitrag zu Aerosolbildung und somit zur Beeinflussung des weltweitem Klimas leisten, soll in dem EU-Projekt MAP geklärt werden, diese Arbeit ist Teil dieses Projekts. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, die es zum einen möglich macht, anorganisches Iod in Meerwasser zu bestimmen. Zum anderen sollte eine Methode entwickelt werden, um elementares Iod in der maritimen Atmosphäre zu bestimmen. Es wurde eine Derivatisierungsmethode entwickelt, die es möglich macht elementares Iod in Anwesenheit von Stärke, a-Cyclodextrin oder RAMEA zu derivatisieren. Die Derivatisierung erfolgt zu 4-Iodo-N,N-Dimethylanilin. Durch Extraktion wird der Analyt in die organische Phase überführt. Die Quantifizierung erfolgt anschließend über die Analyse mit GC/MS und externer Kalibrierung. Die absolute Nachweisgrenze für Iod in Wasser beträgt 0,57nmol, für Iodid 0,014nmol und für Iodat 0,115nmol. Die absoluten Nachweisgrenzen für Iod in Anwesenheit eines Absorptionsmittel betragen für Stärke 0,24nmol, für a-Cyclodextrin 0,9nmol und für RAMEA 0,35nmol. Die Analysenmethoden wurden zunächst im Labor entwickelt und anschließend zur Analyse von Realproben verwendet. An verschiedenen Orten wurden Meerwasserproben (auf der Celtic Explorer und in der Nähe der Mace Head Messstation) genommen und deren Iod-, Iodid- und Iodatgehalt bestimmt. Keine der Proben enthielt elementares Iod. Iodid konnte in allen Proben detektiert werden. In Proben, die auf dem offenen Ozean an Bord der Celtic Explorer genommen wurden variierte die Menge zwischen 12µg/L und 90µg/L. Auffällig war hierbei, dass die Proben, die in Küstennähe genommen wurden höhere Iodidkonzentrationen aufwiesen. Ein Einfluss der Küste und der dort vorhandenen Makroalgen ist sehr wahrscheinlich. Meerwasserproben, die in der Nähe der MHARS genommen wurden wiesen höhere Konzentrationen und einen größeren dynamischen Bereich der Iodidkonzentrationen auf. Die Konzentrationen variierten von 29µg/L bis 630 µg/L. Der Iodatgehalt der Meerwasserproben wurde ebenfalls bestimmt. 1µg/L bis 90µg/L Iodat konnte in den Proben vom offenen Ozean detektiert werden. Die Küstenproben wiesen mit 150µg/L bis 230µg/L deutlich höhere Iodatkonzentrationen auf. Es konnte kein Zusammenhang zwischen der Tageszeit und den Iodid- oder Iodatkonzentrationen gefunden werden. Es konnte ebenso kein Zusammenhang zwischen der Fluoreszenz des Meerwassers und den Iodid- oder Iodatkonzentrationen gefunden werden. Auf der Celtic Explorer, wie auch in Mace Head wurden außerdem beschichtete Denuder zur Anreicherung von elementarem Iod aus Luft eingesetzt. Die Denuder, die auf dem Schiff verwendet wurden waren mit Stärke bzw. mit a-CD beschichtet. Die mit Stärke beschichteten Denuder geben so einen Überblick über die Iodkonzentration in Luft über einen längeren Zeitraum (ca. 2-3h), während die mit Cyclodextrin beschichteten Denuder die Iodkonzentration in der letzten halben Stunde der Probennahme widerspiegeln. In fast allen Denudern, die mit Stärke beschichtet waren, konnte mehr Iod nachgewiesen werden, als in denen, die mit a-CD beschichtet waren. Im Allgemeinen konnten in den Proben höhere Iodkonzentrationen gefunden werden, die nachts genommen wurden. Der Grund hierfür liegt in der sehr hohen Photolyserate des elementaren Iods während des Tages. Ein Zusammenhang zwischen der Konzentration von VOIs und dem Iodgehalt konnte nicht gefunden werden. Anhand der genommen Denuderproben von Mace Head konnte festgestellt werden, dass die Iodkonzentration in Denudern, deren Probenahme während Ebbe beendet wurde hoch deutlich höher sind, als die in anderen Denudern. Das lässt sich dadurch erklären, dass Makroalgen während Ebbe in direktem Kontakt zur Luft sind und somit mehr Iod in der Luft zu finden ist. Eine wichtige Frage, die im Zusammenhang mit der Iodchemie in maritimer Umgebung steht konnte im Rahmen dieser Arbeit geklärt werden. In der maritimen Grenzschicht über dem Nordatlantik konnte elementares Iod detektiert werden, d.h. es deutet sich an, dass Iod auch auf dem offenen Ozean einen Beitrag zur Partikelbildung liefern kann und es sich nicht ausschließlich um einen Küsteneffekt handelt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to investigate the evaporation dynamics of water microdrops deposited on atomic force microscope cantilevers, which were employed as sensitive stress, mass and temperature sensors with high time resolution. The technique has some advantages with respect to video-microscope imaging and ultra-precision weighting with electronic microbalances or quartz crystal microbalances, since it allows to measure more drop parameters simultaneously for smaller drop sizes. On hydrophobic surfaces a single measurement with a silicon cantilever provides data for the drop mass, contact angle and radius until very close to complete evaporation. On hydrophilic surfaces, it is as well possible to measure drop mass and inclination of the cantilever. The technique further allows to detect differences between water microdrops evaporating from clean hydrophilic and hydrophobic surfaces. On hydrophilic surfaces the cantilever inclination is negative at the end of the evaporation process. Negative inclination mostly occurs when drops are pinned. This effect can not be detected with any of the other well-established methods. The evidence arises that on the hydrophilic surface a thin water film forms, while this is not the case for the hydrophobic surface. Metal coated cantilevers can be used as thermometers, and allow to precisely measure the temperature of an evaporating microdrop. This can be relevant for further applications of cantilevers as calorimetric sensors for chemical reactions taking place in drops on their surface. The applicability of Young’s equation was verified for microdrops. It was shown that Young’s equation can not be applied to microscopic drops due to their fast evaporation. A study on evaporation of microdrops in saturated vapor atmosphere was performed to estimate evaporation times and compare them with a theory developed, which relates the initial drop volume with the overall evaporation time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates the influence of chemical reactions on the release of elements from target-ion source units for ISOL facilities. Methods employed are thermochromatography, yield and hold-up time measurements; adsorption enthalpies have been determined for Ag and In. The results obtained with these methods are consistent. Elements exhibit reversible or irreversible reactions on different surfaces (Tantalum, quartz, sapphire). The interactions with surfaces inside the target-ion source unit can be used to improve the quality of radioactive ion beams. Spectroscopic data obtained at CERN-ISOLDE using a medium-temperature quartz transfer line show the effectivity of selective adsorption for beam purification. New gamma lines of 131Cd have been observed and a tentative decay scheme is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mehr als hundert Jahre archäologischer Forschung haben gezeigt, dass in Mayen in römischer und mittelalterlicher Zeit eines der wichtigsten europäischen Produktionszentren für die Herstellung qualitätsvoller Gebrauchskeramik bestand. Im Rahmen dieser Studie wurden vier Befundkomplexe aus Töpfereisiedlungen vom 4. bis in das 14. Jahrhundert untersucht. Genauer handelt es sich um Keramik aus zwei spätantiken Brennanlagen des 4. Jahrhunderts im Bereich der Flur „Auf der Eich“ an den Straßen „Am Sonnenhang“ und „Frankenstraße“. Weiterhin konnte Material aus zwei Töpferofenfüllungen des 5. bis 9. Jahrhunderts analysiert werden, das 1975 auf dem Grundstück 55 an der „Siegfriedstraße“ in Brennanlagen entdeckt wurde. Hinzu kam Brenngut aus elf Töpferöfen des späten 8. bis 14. Jahrhunderts, welches in den so genannten „Burggärten“ der Genovevaburg von Mayen in den Jahren 1986/87 durch die archäologische Denkmalpflege in Koblenz geborgen wurde. Die mineralogischen Untersuchungen zur Charakterisierung der „Mayener Keramik“ wurden systematisch an den Keramikmaterialien aus diesen Fundstellen durchgeführt. Mittelalterliche Keramik aus Bornheim-Walberberg, Brühl-Eckdorf, Höhr-Grenzhausen, Langerwehe, Frechen, Brühl-Pingsdorf, Paffrath, Raeren, Ratingen-Breitscheid, Siegburg-Seehofstraße, Siegburg-Scherbenhügel, Fredelsloh und Brühl-Badorf konnte für diese Arbeit als Referenzmaterialien ebenfalls untersucht werden. Provenienzanalysen wurden an Keramikproben aus 27 Fundorten, die makroskopisch nach Mayener Ware aussehen, mit mineralogischen Methoden durchgeführt, um sie der Fundregion Mayen eindeutig zuordnen zu können.rnPhasenanalyse, chemische Analyse und thermische Analyse wurden an Keramik sowie Ton durchgeführt. Die Phasenanalyse wurde zur Bestimmung der mineralischen Zusammensetzung von Grundmasse und Magerungsmittel (Röntgendiffraktometrie (XRD), Polarisationsmikroskop, Mikro-Raman-Spektroskopie) verwendet. Die chemische Zusammensetzung wurde durch Röntgenfluoreszenzanalyse (RFA) ermittelt. Elektronenstrahlmikroanalyse (ESMA) und Laser-Massenspektrometrie mit induktiv gekoppeltem Plasma (LA-ICP-MS) wurden bei den Proben, bei denen weniger als 2g Material zur Verfügung standen, eingesetzt. Brennexperimente wurden am originalen Rohstoff der Keramik aus den „Burggärten“ der Genovevaburg durchgeführt. Gebrannter Ton wurde durch Röntgendiffraktometrie (XRD), Infrarotspektroskopie (IR) und Differential-Thermoanalyse (DTA) analysiert. rnAnhand der Messergebnisse lässt sich die Mayener Keramik aus den vier Fundplätzen in zwei Typen zusammenzufassen: der mit Feldspat-reichem Sand gemagerte römische Typ und der mit Quarz-reichem Sand gemagerte mittelalterliche Typ. Die Änderung des Magerungsmittels von Feldspat- zu Quarzsand weist eine technische Entwicklung zu höheren Brenntemperaturen von der Römerzeit bis in das Mittelalter nach. Nach der Untersuchung und dem Vergleich mit den Referenzkeramikgruppen ist festzustellen, dass durch multivariate Statistikanalysen der chemischen Komponenten die Charakterisierung der Keramik und eine Differenzierung zwischen den Keramikgruppen gelingt. Diese Erkenntnisse bildeten die Basis für Provenienzanalysen. 16 Fundorte können durch Provenienzanalyse sicher als Exportregionen der Mayener Ware festgestellt werden. Gemäß den Brennexperimenten lassen sich die chemischen Reaktionen während des Brandprozesses nachvollziehen. Zwei Methoden wurden mittels Röntgendiffraktometrie (XRD) und Differential-Thermoanalyse (DTA) zur Bestimmung der Brenntemperaturen der Keramik modelliert. Die Töpferöfen der „Burggärten“ können nach der Brenntemperatur in zwei Typen zusammengefasst werden: solche mit einer Brenntemperatur unter 1050°C und solche mit einer Brenntemperatur über 1050°C.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seit Anbeginn der Menschheitsgeschichte beeinflussen die Menschen ihre Umwelt. Durch anthropogene Emissionen ändert sich die Zusammensetzung der Atmosphäre, was einen zunehmenden Einfluss unter anderem auf die Atmosphärenchemie, die Gesundheit von Mensch, Flora und Fauna und das Klima hat. Die steigende Anzahl riesiger, wachsender Metropolen geht einher mit einer räumlichen Konzentration der Emission von Luftschadstoffen, was vor allem einen Einfluss auf die Luftqualität der windabwärts gelegenen ruralen Regionen hat. In dieser Doktorarbeit wurde im Rahmen des MEGAPOLI-Projektes die Abluftfahne der Megastadt Paris unter Anwendung des mobilen Aerosolforschungslabors MoLa untersucht. Dieses ist mit modernen, zeitlich hochauflösenden Instrumenten zur Messung der chemischen Zusammensetzung und Größenverteilung der Aerosolpartikel sowie einiger Spurengase ausgestattet. Es wurden mobile Messstrategien entwickelt und angewendet, die besonders geeignet zur Charakterisierung urbaner Emissionen sind. Querschnittsmessfahrten durch die Abluftfahne und atmosphärische Hintergrundluftmassen erlaubten sowohl die Bestimmung der Struktur und Homogenität der Abluftfahne als auch die Berechnung des Beitrags der urbanen Emissionen zur Gesamtbelastung der Atmosphäre. Quasi-Lagrange’sche Radialmessfahrten dienten der Erkundung der räumlichen Erstreckung der Abluftfahne sowie auftretender Transformationsprozesse der advehierten Luftschadstoffe. In Kombination mit Modellierungen konnte die Struktur der Abluftfahne vertieft untersucht werden. Flexible stationäre Messungen ergänzten den Datensatz und ließen zudem Vergleichsmessungen mit anderen Messstationen zu. Die Daten einer ortsfesten Messstation wurden zusätzlich verwendet, um die Alterung des organischen Partikelanteils zu beschreiben. Die Analyse der mobilen Messdaten erforderte die Entwicklung einer neuen Methode zur Bereinigung des Datensatzes von lokalen Störeinflüssen. Des Weiteren wurden die Möglichkeiten, Grenzen und Fehler bei der Anwendung komplexer Analyseprogramme zur Berechnung des O/C-Verhältnisses der Partikel sowie der Klassifizierung der Aerosolorganik untersucht. Eine Validierung verschiedener Methoden zur Bestimmung der Luftmassenherkunft war für die Auswertung ebenfalls notwendig. Die detaillierte Untersuchung der Abluftfahne von Paris ergab, dass diese sich anhand der Erhöhung der Konzentrationen von Indikatoren für unprozessierte Luftverschmutzung im Vergleich zu Hintergrundwerten identifizieren lässt. Ihre eher homogene Struktur kann zumeist durch eine Gauß-Form im Querschnitt mit einem exponentiellen Abfall der unprozessierten Schadstoffkonzentrationen mit zunehmender Distanz zur Stadt beschrieben werden. Hierfür ist hauptsächlich die turbulente Vermischung mit Umgebungsluftmassen verantwortlich. Es konnte nachgewiesen werden, dass in der advehierten Abluftfahne eine deutliche Oxidation der Aerosolorganik im Sommer stattfindet; im Winter hingegen ließ sich dieser Prozess während der durchgeführten Messungen nicht beobachten. In beiden Jahreszeiten setzt sich die Abluftfahne hauptsächlich aus Ruß und organischen Partikelkomponenten im PM1-Größenbereich zusammen, wobei die Quellen Verkehr und Kochen sowie zusätzlich Heizen in der kalten Jahreszeit dominieren. Die PM1-Partikelmasse erhöhte sich durch die urbanen Emissionen im Vergleich zum Hintergrundwert im Sommer in der Abluftfahne im Mittel um 30% und im Winter um 10%. Besonders starke Erhöhungen ließen sich für Polyaromaten beobachten, wo im Sommer eine mittlere Zunahme von 194% und im Winter von 131% vorlag. Jahreszeitliche Unterschiede waren ebenso in der Größenverteilung der Partikel der Abluftfahne zu finden, wo im Winter im Gegensatz zum Sommer keine zusätzlichen nukleierten kleinen Partikel, sondern nur durch Kondensation und Koagulation angewachsene Partikel zwischen etwa 10nm und 200nm auftraten. Die Spurengaskonzentrationen unterschieden sich ebenfalls, da chemische Reaktionen temperatur- und mitunter strahlungsabhängig sind. Weitere Anwendungsmöglichkeiten des MoLa wurden bei einer Überführungsfahrt von Deutschland an die spanische Atlantikküste demonstriert, woraus eine Kartierung der Luftqualität entlang der Fahrtroute resultierte. Es zeigte sich, dass hauptsächlich urbane Ballungszentren von unprozessierten Luftschadstoffen betroffen sind, advehierte gealterte Substanzen jedoch jede Region beeinflussen können. Die Untersuchung der Luftqualität an Standorten mit unterschiedlicher Exposition bezüglich anthropogener Quellen erweiterte diese Aussage um einen Einblick in die Variation der Luftqualität, abhängig unter anderem von der Wetterlage und der Nähe zu Emissionsquellen. Damit konnte gezeigt werden, dass sich die entwickelten Messstrategien und Analysemethoden nicht nur zur Untersuchung der Abluftfahne einer Großstadt, sondern auch auf verschiedene andere wissenschaftliche und umweltmesstechnische Fragestellungen anwenden lassen.