633 resultados para Ingegneria dei tessuti, Medicina Rigenerativa, Collagene
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nell’ambito di questa Tesi sono state affrontate le fasi di progettazione, sviluppo e caratterizzazione di materiali biomimetici innovativi per la realizzazione di membrane e/o costrutti 3D polimerici, come supporti che mimano la matrice extracellulare, finalizzati alla rigenerazione dei tessuti. Partendo dall’esperienza di ISTEC-CNR e da un’approfondita conoscenza chimica su polimeri naturali quali il collagene, è stata affrontata la progettazione di miscele polimeriche (blends) a base di collagene, addizionato con altri biopolimeri al fine di ottimizzarne i parametri meccanici e la stabilità chimica in condizioni fisiologiche. I polimeri naturali chitosano ed alginato, di natura polisaccaridica, già noti per la loro biocompatibilità e selezionati come additivi rinforzanti per il collagene, si sono dimostrati idonei ad interagire con le catene proteiche di quest’ultimo formando blends omogenei e stabili. Al fine di ottimizzare l’interazione chimica tra i polimeri selezionati, sono stati investigati diversi processi di blending alla base dei quali è stato applicato un processo complesso di co-fibrazione-precipitazione: sono state valutate diverse concentrazioni dei due polimeri coinvolti e ottimizzato il pH dell’ambiente di reazione. A seguito dei processi di blending, non sono state registrate alterazioni sostanziali nelle caratteristiche chimiche e nella morfologia fibrosa del collagene, a riprova del fatto che non hanno avuto luogo fenomeni di denaturazione della sua struttura nativa. D’altro canto entrambe le tipologie di compositi realizzati, possiedano proprietà chimico-fisiche peculiari, simili ma non identiche a quelle dei polimeri di partenza, risultanti di una reale interazione chimica tra le due molecole costituenti il blending. Per entrambi i compositi, è stato osservato un incremento della resistenza all’attacco dell’enzima collagenasi ed elevato grado di swelling, quest’ultimo lievemente inferiore per il dispositivo contenente chitosano. Questo aspetto, negativo in generale per quanto concerne la progettazione di impianti per la rigenerazione dei tessuti, può avere aspetti positivi poiché la minore permeabilità nei confronti dei fluidi corporei implica una maggiore resistenza verso enzimi responsabili della degradazione in vivo. Studi morfologici al SEM hanno consentito di visualizzare le porosità e le caratteristiche topografiche delle superfici evidenziando in molti casi morfologie ibride che confermano il buon livello d’interazione tra le fasi; una più bassa omogeneità morfologica si è osservata nel caso dei composti collagene-alginato e solo dopo reidratazione dello scaffold. Per quanto riguarda le proprietà meccaniche, valutate in termini di elasticità e resistenza a trazione, sono state rilevate variazioni molto basse e spesso dentro l’errore sperimentale per quanto riguarda il modulo di Young; discorso diverso per la resistenza a trazione, che è risultata inferiore per i campione di collagene-alginato. Entrambi i composti hanno comunque mostrato un comportamento elastico con un minore pre-tensionamento iniziale, che li rendono promettenti nelle applicazioni come impianti per la rigenerazione di miocardio e tendini. I processi di blending messi a punto nel corso della ricerca hanno permesso di ottenere gel omogenei e stabili per mezzo dei quali è stato possibile realizzare dispositivi con diverse morfologie per diversi ambiti applicativi: dispositivi 2D compatti dall’aspetto di membrane semitrasparenti idonei per rigenerazione del miocardio e ligamenti/tendini e 3D porosi, ottenuti attraverso processi di liofilizzazione, con l’aspetto di spugne, idonei alla riparazione/rigenerazione osteo-cartilaginea. I test di compatibilità cellulare con cardiomioblasti, hanno dimostrato come entrambi i materiali compositi realizzati risultino idonei a processi di semina di cellule differenziate ed in grado di promuovere processi di proliferazione cellulare, analogamente a quanto avviene per il collagene puro.
Specifiche generali dei biomateriali di interesse per l'ingegneria dei tessuti del distretto uterino
Resumo:
Lo scopo di questa trattazione è quello di fornire una panoramica sui metodi di ingegnerizzazione dell’utero ad oggi sperimentati. L’obiettivo degli studi qui analizzati è quello di creare in vitro uno scaffold per l’utero umano con adeguate caratteristiche strutturali e determinati componenti al fine di permettere ai tessuti vicini di rigenerarsi e per poterne studiare le proprietà in vivo. Gli scaffold analizzati sono a base di collagene, fatti di materiali sintetici o costituiti dalle dECM. Per effettuare la decellularizzazione delle ECM sono stati impiegati detergenti come SDS e Triton X-100 o alta pressione idrostatica. Le impalcature realizzate sono state poi valutate per quanto riguarda le proprietà istologiche, IHC, strutturali e meccaniche e tramite angiografia è stata esaminata la conservazione delle reti vascolari negli scaffold dECM. I risultati hanno confermato l'efficacia del protocollo di decellularizzazione tramite HHP o l’utilizzo combinato di SDS e Triton X-100 per fornire scaffold dell’utero con caratteristiche e componenti della ECM simili all'utero nativo. Per quanto riguarda i materiali sintetici, i polimeri sono risultati particolarmente idonei date le loro caratteristiche, quali elevata porosità e proprietà biomeccaniche regolabili; per i materiali naturali invece, il collagene è stato quello più utilizzato e che ha portato ad ottimi risultati, anche in quanto componente principale dell’ECM. Gli studi in vivo hanno poi dimostrato la biocompatibilità e il potenziale rigenerativo degli scaffold e hanno suggerito un percorso di segnalazione come meccanismo di base per il processo rigenerativo. Tra i vari studi è stato analizzato anche il primo protocollo di decellularizzazione efficiente basato sulla perfusione per ottenere scaffold dell’intero utero umano. I risultati raccolti potrebbero essere impiegati in futuri studi di ingegneria del tessuto uterino umano che potrebbero portare allo sviluppo di nuovi trattamenti per pazienti sterili.
Resumo:
L’argomento trattato in questo elaborato riguarda una nuova tecnologia che si sta sviluppando nell’ambito dell’ingegneria dei tessuti: il Bioprinting. Tale rivoluzionario approccio completamente automatizzato, grazie all’utilizzo dell’elaborazione automatica delle immagini CAD (Computer Aided Design) e la fabbricazione assistita al calcolatore CAM (Computer Aided Manufacturing), si propone di ricreare tessuti e/o organi. In particolare nel seguito ne verrà data una definizione e ne verranno definiti i campi di applicazione, per poi proseguire con un’analisi del processo dal punto di vista delle fasi che lo compongono e la speciale tecnologia utilizzata. Infine verrà proposto qualche studio fatto in merito ai tessuti vascolari e alla cartilagine per poi concludere con i pionieri che tuttora contribuiscono al suo sviluppo e con Organovo, una delle aziende leader del settore.
Resumo:
L’enorme progresso nel campo della biologia cellulare ha consentito lo sviluppo di tecnologie per la ricostruzione in vitro di tessuti, definendo una nuova branca di scienze biomediche: l’ingegneria dei tessuti. Tra le sue numerose applicazioni, la riparazione del tessuto cardiaco infartuato rappresenta un’importante obiettivo. Tra i polimeri sintetici sperimentati per questa applicazione, il poli(butilene succinato) (PBS) rappresenta un ottimo candidato. Nonostante i promettenti risultati già ottenuti dal punto di vista di biodegradabilità e biocompatibilità, il PBS presenta proprietà meccaniche poco adatte a questo impiego: l’applicazione miocardica richiede particolari caratteristiche di modulo di Young (E) e un ritorno elastico comparabile a quello del miocardio. Al fine di conferire al PBS proprietà meccaniche funzionali all’MTE (Miocardial Tissue Engineering), in questa Tesi è stato sintetizzato e caratterizzato un nuovo copolimero statistico a base di PBS contenente subunità Pripol 1009, un diacido prodotto dalla Croda, biobased e biodegradabile. Sono stati preparati film attraverso pressofusione e scaffold tramite elettrofilatura. Oltre alla caratterizzazione molecolare, volta a determinare il peso molecolare, la struttura e la composizione, film e scaffold sono stati sottoposti anche ad analisi termica, diffrattometrica, meccanica e a studi di degradazione idrolitica in condizioni fisiologiche. I risultati ottenuti hanno evidenziato che l’inserimento di segmenti Pripol all’interno della catena polimerica ha portato, oltre che a un incremento della stabilità termo-ossidativa, anche a un importante miglioramento delle proprietà meccaniche: il materiale sintetizzato, sia sotto forma di film che di scaffold, possiede le caratteristiche di elastomero termoplastico che lo rendono adatto ad applicazioni nell’ingegneria tissutale. Da ultimo, rispetto al PBS, il copolimero statistico mostra una maggiore velocità di degradazione in condizioni fisiologiche.
Resumo:
Lo studio della vulnerabilità sismica degli aggregati attraverso una scheda speditiva
Resumo:
A seconda della forma del modello da realizzare, durante la laminazione su stampo le fibre di cui è composto un materiale composito si dispongono in maniera differente rispetto alla trama originale del tessuto. In questo lavoro di tesi, dopo una descrizione dei materiali compositi, dei processi di produzione e dei metodi implementati attualmente per la loro simulazione in codici di calcolo commerciali, si concentra l'attenzione su un metodo di modellazione dei tessuti, chiamato metodo di Verlet, che consente di studiare la disposizione di un tessuto che si adagia su un corpo di forma qualsiasi, tenendo in conto le deformazioni delle fibre. La tesi si conclude con alcune considerazioni sulla problematica affrontata e sui risultati ottenuti.
Resumo:
Questa tesi si prepone di indagare quali ricadute positive potrebbe avere, nei confronti della pianificazione urbanistica e il monitoraggio a scala territoriale, l’applicazione delle tecnologie di analisi spaziale assistita dal computer, con particolare riferimento all’analisi tipomorfologica delle forme insediative, sia a scala di quartiere (distinguendo tessuto compatto, a grana fine, grossa, ecc.), che a scala urbana (analisi della densità e delle aggregazioni extraurbane). A tal fine sono state elaborate due ipotesi applicative delle recenti tecnologie di elaborazione object-oriented, sperimentandole sulle principali città romagnole che si collocano sull’asse della via Emilia.
Resumo:
L’ingegneria tissutale rappresenta oggi una delle tematiche più importanti di ricerca in ambito medico-ingegneristico. Questa disciplina si pone come obiettivo di far fronte alla mancanza, sostituzione o riparazione di tessuto attraverso lo sviluppo di scaffolds opportunamente ottimizzati. I polimeri naturali rappresentano una classe di materiali particolarmente indicata per soddisfare i requisiti richiesti soprattutto per la biocompatibilità che spesso li caratterizza. La gelatina è uno dei materiali che si presta alla realizzazione di scaffolds innovativi ad altissima biocompatibilità nonostante le scarse proprietà meccaniche e la facilità di degradazione. Proprio per questo è possibile migliorarne le prestazioni attraverso l’ottimizzazione di processi di blending con altri polimeri, in questo caso le nanofibre di cellulosa e l’impiego di agenti reticolanti. Lo scopo di questo lavoro di tesi, svolto presso l’Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR) di Faenza, è la progettazione, lo sviluppo e la caratterizzazione di scaffolds polimerici porosi a base di gelatina e nanocellulosa opportunamente reticolati per un ampio range di applicazioni nell’ambito dell’ingegneria tissutale. A questo scopo, sono stati sviluppati cinque dispositivi 3D porosi, ottenuti tramite liofilizzazione, che differiscono per il tipo di processo reticolante applicato. Il progetto ha previsto una prima fase di ricerca bibliografica che ha permesso di conoscere lo stato dell’arte sull’argomento trattato. Si è potuto così procedere alla realizzazione degli scaffolds e a una prima caratterizzazione di carattere chimico-fisico e morfologico. A questo punto, sulla base dei dati ottenuti, sono stati scelti i campioni su cui effettuare ulteriori caratterizzazioni meccaniche. In ultimo, sono stati analizzati e rielaborati tutti i risultati.
Resumo:
Le tecniche di imaging al seno per la rilevazione di tumori stanno interessando un notevole numero di gruppi di ricerca in campo biomedico soprattutto negli ultimi anni. In particolare si cercano metodologie innovative in quanto le attuali tecniche già sviluppate e utilizzate in campo clinico, mammografia a raggi X e risonanza magnetica (MRI), presentano alcuni limiti. Questa tesi si focalizzerà in particolare su una di queste tecniche emergenti: l’imaging a microonde (MWI). Questo metodo infatti, limita notevolmente i costi, evita disagi per la paziente come la compressione del seno, penetra in modo ottimale nei tessuti e non li ionizza. La MWI si basa sulle diverse proprietà dielettriche, permittività e conduttività, dei vari tessuti che costituiscono la mammella, in particolare tra tessuto sano e maligno. Lo scopo di questa tesi è quello di analizzare tali proprietà dielettriche, le diversità che i vari tessuti presentano e come tutto ciò venga sfruttato per ottenere l’imaging della mammella. In particolare questo lavoro si propone di riportare e analizzare i principali studi sui tessuti biologici della mammella compiuti nel corso degli anni riguardo queste proprietà dielettriche e i rispettivi risultati ottenuti. Si tratteranno inoltre i mezzi di accoppiamento: soluzioni in cui è immerso l’assetto antenne-oggetto che minimizzano la riflessione del segnale sulla pelle e assicurano una migliore qualità di immagine.
Resumo:
Tesi curriculare che riesamina una selezione di progetti di Composizione Architettonica alla luce del tema comune della Rigenerazione dei Tessuti Urbani.
Resumo:
L’ingegneria dei tessuti molli, quali il miocardio, sta sempre più emergendo come approccio alternativo alle terapie tradizionali. In questo ambito, i poliesteri costituiscono una classe di polimeri promettente, poiché le variegate strutture chimiche che li caratterizzano permettono di soddisfare un’ampia gamma di esigenze. Negli ultimi anni, l’attenzione della ricerca si è incentrata sul poli(butilene succinato)(PBS). Il PBS, tuttavia, possiede proprietà meccaniche non ottimali per l’ingegneria dei tessuti molli; inoltre i tempi di degradazione sono lunghi; ciò è dovuto al grado di cristallinità e all’idrofobicità, entrambi elevati. Nell’ottica di migliorare le proprietà non soddisfacenti di tale omopolimero, sono stati sintetizzati e caratterizzati nuovi copoliesteri alifatici a base di PBS biocompatibili e biodegradabili. In particolare, sono stati realizzati un copolimero a blocchi e uno statistico a base di Pripol 1009, un diacido commerciale (Croda), e un copolimero a blocchi a base di neopentil glicole, valutando sia l’effetto del tipo di comonomero introdotto nel PBS (Pripol 1009 vs. neopentil glicole) che quello dell’architettura molecolare (copolimero statistico vs. copolimero multiblocco). I materiali sintetizzati sono stati processati in forma di film attraverso pressofusione e di scaffold tramite elettrofilatura. Oltre alla caratterizzazione molecolare, film e scaffold sono stati sottoposti anche ad analisi termica, diffrattometrica, meccanica e a studi di degradazione idrolitica in condizioni fisiologiche. I risultati ottenuti hanno evidenziato la possibilità di modulare sia le proprietà meccaniche che la velocità di degradazione in condizioni fisiologiche. Tutti i copolimeri, infatti, presentano caratteristiche di elastomeri termoplastici e dei profili di degradazione variabili rispetto all’omopolimero, che li rendono adatti per applicazioni nel campo dell’ingegneria dei tessuti molli.
Resumo:
Le lesioni del sistema nervoso periferico, causate da eventi traumatici o da patologie degenerative, costituiscono un danno che può portare alla perdita di specifiche funzionalità motorie o sensoriali. In questi casi, la terapia chirurgica è necessaria per riparare la perdita di continuità assonale. Il gold standard operatorio attuale è costituito dal trapianto nella sede lesionata di un nervo da donatore o dallo stesso soggetto affetto dal danno. Recentemente, un approccio basato su tecniche di ingegneria dei tessuti propone l’impianto di biomateriali modellati come condotti che favoriscano la rigenerazione assonale. Ne è un esempio chiaro un recente lavoro di ricerca, nel quale Cheng et al. propongono una strategia basata sull’impiego di scaffold piezoelettrici prodotti attraverso una tecnica di "casting annealing displacement " che utilizza Polivinilidenfluoruro (PVDF) e Policaprolattone (PCL). Confrontando in vitro scaffold in PCL, in PVDF e PCL/PVDF, in particolare analizzandone le proprietà piezoelettriche e quelle meccaniche, si rilevano i vantaggi della copolimerizzazione. Questi risultati di interesse vengono inoltre confermati dai risultati funzionali ottenuti con l’impianto in vivo in topi con una lesione di 15 mm al nervo sciatico.