127 resultados para Finanza matematica, Probabilità e statistica, Approssimazioni saddlepoint
Resumo:
In questo elaborato si presentano alcuni risultati relativi alle equazioni differenziali stocastiche (SDE) lineari. La soluzione di un'equazione differenziale stocastica lineare è un processo stocastico con distribuzione multinormale in generale degenere. Al contrario, nel caso in cui la matrice di covarianza è definita positiva, la soluzione ha densità gaussiana Γ. La Γ è inoltre la soluzione fondamentale dell'operatore di Kolmogorov associato alla SDE. Nel primo capitolo vengono presentate alcune condizioni necessarie e sufficienti che assicurano che la matrice di covarianza sia definita positiva nel caso, più semplice, in cui i coefficienti della SDE sono costanti, e nel caso in cui questi sono dipendenti dal tempo. A questo scopo gioca un ruolo fondamentale la teoria del controllo. In particolare la condizione di Kalman fornisce un criterio operativo per controllare se la matrice di covarianza è definita positiva. Nel secondo capitolo viene presentata una dimostrazione diretta della disuguaglianza di Harnack utilizzando una stima del gradiente dovuta a Li e Yau. Le disuguaglianze di Harnack sono strumenti fondamentali nella teoria delle equazioni differenziali a derivate parziali. Nel terzo capitolo viene proposto un esempio di applicazione della disuguaglianza di Harnack in finanza. In particolare si osserva che la disuguaglianza di Harnack fornisce un limite superiore a priori del valore futuro di un portafoglio autofinanziante in funzione del capitale iniziale.
Resumo:
Argomento della presente tesi è il calcolo integrale. Nella prima parte dell'elaborato viene descritta l'evoluzione storica delle idee presenti già nella matematica antica, che conducono infine alla creazione del calcolo integrale vero e proprio, nei fondamentali lavori di Newton e Leibniz. Segue una sintetica descrizione delle sistematizzazioni formali della teoria dell'integrazione, ad opera di Riemann e successivamente Lebesgue, oltre alla generalizzazione dell'integrale di Riemann ideata da Sieltjes, di grande importanza, fra l'altro, nel calcolo delle probabilità. Si dà poi conto degli spazi funzionali con norme integrali (L^p, spazi di Sobolev). L'ultimo capitolo è dedicato all'insegnamento del calcolo integrale nella scuola secondaria in Italia, e alla sua evoluzione dall'inizio del XX secolo a oggi.
Resumo:
Analisi storica dei legami tra matematica e musica dall'antica Grecia fino alla scala cromatica moderna. Descrizione del progetto Doremat, progetto che vede l'insegnamento della matematica con la musica, e delle analisi fatte in aula sui fattori affettivi.
Resumo:
La trasformata di Karhunen-Loève monodimensionale è la decomposizione di un processo stocastico del secondo ordine a parametrizzazione continua in coefficienti aleatori scorrelati. Nella presente dissertazione, la trasformata è ottenuta per via analitica, proiettando il processo, considerato in un intervallo di tempo limitato [a,b], su una base deterministica ottenuta dalle autofunzioni dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori positivi. Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori positivi dell'operatore integrale di Hilbert-Schmidt, che ha in Kernel la funzione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura genera coefficienti aleatori che si rivelano variabili aleatorie centrate e scorrelate. L'espansione in serie che risulta dalla trasformata è una combinazione lineare numerabile di coefficienti aleatori di proiezione ed autofunzioni convergente in media quadratica al processo, uniformemente sull'intervallo temporale. Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo spazio di probabilità (O,F,P). Esistono molte altre espansioni in serie di questo tipo, tuttavia la trasformata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto all'errore totale in media quadratica che consegue al troncamento della serie. Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni un notevole successo tra le discipline applicate.
Resumo:
L'espressione del gene MYCN è un importante indicatore della severità del NBL. Poiché il numero di copie di MYCN è un indice grezzo della sua espressione quantificarle utilizzando tecniche come la “fluorescent in situ hybridization” (FISH) può servire a formulare una stima del livello di espressione MYCN [Shapiro 1993]. Tuttavia, l'espressione aberrante di MYCN nel NBL non è sempre associata all'amplificazione genica; pertanto la valutazione diretta del livello di espressione di questo gene sarebbe un miglior indicatore prognostico. Questa tesi è stata sviluppata nell'ambito di un progetto che si propone di realizzare un sensore biomolecolare sintetico per l'identificazione del livello di espressione di MYCN. Di seguito saranno presentati i dettagli relativi alla progettazione della topologia circuitale e all’analisi in silico che sono state condotte per caratterizzare il comportamento dinamico del sistema. Questo lavoro è stato svolto nel laboratorio di Ingegneria Cellulare e Molecolare "S. Cavalcanti", presso la Sede di Cesena del Dipartimento di Ingegneria dell'Energia elettrica e dell'Informazione "Guglielmo Marconi" (DEI) dell’Ateneo di Bologna.
Resumo:
Nell’ambito di questo lavoro di tesi è stata progettata e realizzata un'applicazione di edutainment, pensata per essere fruita attraverso dispositivi mobili, da parte di studenti delle scuole medie, con l’obiettivo di esercitare e migliorare le capacità logiche e di problem solving. La tesi descrive il contesto educativo e scolastico in relazione alla presenza delle tecnologie dell'informazione e della comunicazione, ed infine mostra come una componente di intrattenimento possa essere utile nei processi di apprendimento. Lo sviluppo dell’applicazione è basato sulla progettazione di applicazioni ibride, usando come framework di sviluppo Apache Cordova, quindi attraverso tecnologie web-based, con un’architettura client-server, in cui la parte client gestisce l’interfaccia grafica e le interazioni logiche mentre la parte server viene sfruttata esclusivamente come contenitore di informazioni.
Resumo:
La geomatica è la disciplina che si occupa di acquisire, modellizzare, interpretare, elaborare, archiviare e divulgare informazioni georeferenziate, ovvero informazioni caratterizzate da una posizione in un prescelto sistema di riferimento. La geomatica ha i suoi fondamenti metodologici nelle discipline che si sono occupate di risolvere i problemi di posizionamento sulla superficie terrestre e nelle sue immediate vicinanze (geodesia, astronomia, matematica, statistica). Alla geomatica afferiscono pertanto le tecniche di posizionamento terrestri (storicamente ricomprese nella topografia) e spaziali (GPS), la fotogrammetria digitale, le tecniche di scansione laser da terra e da velivolo, il telerilevamento da aereo e da satellite, la cartografia numerica, la geostatica. Applicare la geomatica in ambito forense significa descrivere le metodologie e le tecniche che vengono utilizzate in presenza di indagini giudiziarie, quali ricostruzioni di scene del crimine o ricostruzioni di incidenti stradali a partire proprio da rilievi geomatici. Le argomentazioni della tesi si suddividono in tre parti. La prima in cui descrivo le principali tecniche di misura e strumenti utilizzati dalla geomatica in ambito forense; la seconda e la terza parte descrivono in particolare le metodologie e le tecniche che un perito forense può applicare in presenza di due contesti abbastanza frequenti: la ricostruzione di scene del crimine e la ricostruzione di incidenti stradali.
Resumo:
Scopo di questa tesi è verificare se, testi di matematica modificati da un punto di vista grafico e senza variazioni a livello di competenze matematiche richieste, possano facilitare i ragazzi con Disturbi Specifici di Apprendimento (DSA). Aspetti non legati alla matematica, come la difficoltà a leggere il testo troppo lungo, a ricordare o sapere il significato di alcune parole, a non avere una immagine di riferimento, bloccano il ragazzo impedendo all’insegnante una corretta valutazione. Viene presentata dapprima una parte teorica sui disturbi e sulle leggi che tutelano i ragazzi, in seguito viene analizzata nel dettaglio la parte sperimentale, riportando un’analisi di quanto emerso da interviste semi-strutturate e questionari posti a ragazzi DSA di diverse associazioni.
Resumo:
Con questa tesi verrà spiegata l'intrinseca connessione tra la matematica della teoria dei numeri e l'affidabilità e sicurezza dei crittosistemi asimmetrici moderni. I principali argomenti trattati saranno la crittografia a chiave pubblica ed il problema della verifica della primalità. Nei primi capitoli si capirà cosa vuol dire crittografia e qual è la differenza tra asimmetria e simmetria delle chiavi. Successivamente verrà fatta maggiore luce sugli utilizzi della crittografia asimmetrica, mostrando tecniche per: comunicare in modo confidenziale, scambiare in modo sicuro chiavi private su un canale insicuro, firmare messaggi, certificare identità e chiavi pubbliche. La tesi proseguirà con la spiegazione di quale sia la natura dei problemi alla base della sicurezza dei crittosistemi asimmetrici oggigiorno più diffusi, illustrando brevemente le novità introdotte dall'avvento dei calcolatori quantistici e dimostrando l'importanza che riveste in questo contesto il problema della verifica della primalità. Per concludere verrà fatta una panoramica di quali sono i test di primalità più efficienti ed efficaci allo stato dell'arte, presentando una nuova tecnica per migliorare l'affidabilità del test di Fermat mediante un nuovo algoritmo deterministico per fattorizzare gli pseudoprimi di Carmichael, euristicamente in tempo O~( log^3{n}), poi modificato sfruttando alcune proprietà del test di Miller per ottenere un nuovo test di primalità deterministico ed euristico con complessità O~( log^2{n} ) e la cui probabilità di errore tende a 0 con n che tende ad infinito.
Resumo:
Questa tesi espone il mio lavoro all'interno del progetto di ricerca del FAMT&L, progetto sviluppato dal dipartimento di Matematica e dal dipartimento di Scienze dell'Educazione sulla valutazione formativa in matematica, finanziato dall'Unione Europea e svolto in collaborazione con Francia, Svizzera, Olanda e Cipro. Questo progetto di ricerca è centrato sulla formazione degli insegnanti alla valutazione formativa. L'obiettivo è quello di formare gli insegnanti a fare valutazione formativa in matematica. Lo strumento scelto è quello di lavorare su video di situazioni in classe. Il mio lavoro di tesi è consistito nell'analizzare le situazioni dei video per trovare delle categorie relative ai contenuti, alle competenze matematiche e alle caratteristiche dell'apprendimento della matematica. Questi materiali saranno utilizzati come materiale nella formazione insegnanti.
Resumo:
Un sistema meccanico è descritto da equazioni differenziali spesso non lineari. Nel maggior numero dei casi tali equazioni non sono risolubili per via analitica e quindi si ricorre all'analisi qualitativa del moto che permette di ricavare informazioni su di esso senza integrare le equazioni. Nell’approccio qualitativo il metodo più utilizzato è la discussione alla Weierstrass che permette di ricavare informazioni sul moto di un punto materiale, che si muove di moto unidimensionale, soggetto a forze conservative, a partire dalla legge di conservazione dell'energia totale. Un altro metodo molto efficace è la costruzione del diagramma di fase, che nel caso di un punto materiale si riduce allo studio delle curve di livello dell’energia totale e permette di rappresentare lo stato del sistema in ogni istante di tempo. Infine altri due metodi analitici che si utilizzano nel caso di oscillazioni non lineari sono il metodo delle approssimazioni successive e delle perturbazioni. In questa tesi viene illustrato ampiamente il primo metodo e si danno alcuni cenni degli altri due, corredandoli con esempi.
Resumo:
L'elaborato fornisce una introduzione alla funzione di Wigner, ovvero una funzione di fase che gioca un ruolo chiave in alcuni ambiti della fisica come l'ottica quantistica. Nel primo capitolo viene sviluppato sommariamente l'apparato matematico-fisico della quantizzazione di Weyl e quindi introdotta l'omonima mappa di quantizzazione tra funzioni di fase ed operatori quantistici. Nella seconda parte si delinea la nozione di distribuzione di quasi-probabilit\`a e si danno alcune importanti esemplificazioni della funzione di Wigner per gli autostati dell'oscillatore armonico. Per finire l'ultimo capitolo tratteggia il panorama sperimentale all'interno del quale la funzione di Wigner viene utilizzata.
Resumo:
Questo lavoro di tesi nasce all’interno del nucleo di ricerca in didattica della fisica dell’Università di Bologna, coordinato dalla professoressa Olivia Levrini e che coinvolge docenti di matematica e fisica dei Licei, assegnisti di ricerca e laureandi. Negli ultimi anni il lavoro del gruppo si è concentrato sullo studio di una possibile risposta all'evidente e pressante difficoltà di certi docenti nell'affrontare gli argomenti di meccanica quantistica che sono stati introdotti nelle indicazioni Nazionali per il Liceo Scientifico, dovuta a cause di vario genere, fra cui l'intrinseca complessità degli argomenti e l'inefficacia di molti libri di testo nel presentarli in modo adeguato. In questo contesto, la presente tesi si pone l’obiettivo di affrontare due problemi specifici di formalizzazione matematica in relazione a due temi previsti dalle Indicazioni Nazionali: il tema della radiazione di corpo nero, che ha portato Max Planck alla prima ipotesi di quantizzazione, e l’indeterminazione di Heisenberg, con il cambiamento di paradigma che ha costituito per l’interpretazione del mondo fisico. Attraverso un confronto diretto con le fonti, si cercherà quindi di proporre un percorso in cui il ruolo del protagonista sarà giocato dagli aspetti matematici delle teorie analizzate e dal modo in cui gli strumenti della matematica hanno contribuito alla loro formazione, mantenendo un costante legame con le componenti didattiche. Proprio in quest'ottica, ci si accorgerà della forte connessione fra i lavori di Planck e Heisenberg e due aspetti fondamentali della didattica della matematica: l'interdisciplinarietà con la fisica e il concetto di modellizzazione. Il lavoro finale sarà quindi quello di andare ad analizzare, attraverso un confronto con le Indicazioni Nazionali per il Liceo Scientifico e con alcune esigenze emerse dagli insegnanti, le parti e i modi in cui la tesi risponde a queste richieste.
Il modello di argomentazione di Toulmin nell’attivitá matematica degli studenti di scuola secondaria
Resumo:
Lo studio decritto in questo progetto di tesi ha avuto origine dalla volontà di analizzare l’atteggiamento di studenti di scuola superiore di I e II grado rispetto alla richiesta di fornire argomentazioni, di giustificare affermazioni o risultati ottenuti in ambito matematico. L’analisi quantitativa dei dati ottenuti sottoponendo gli studenti ad un questionario costituito da quesiti scelti in ambiti differenti tra le prove Invalsi ha evidenziato che solo una parte (36% per le superiori di I grado, 59% per le superiori di II grado) degli studenti che hanno risposto correttamente ai quesiti, è stata in grado di argomentare la risposta. L’analisi è stata a questo punto approfondita sulla base del modello di Toulmin e delle componenti del processo di argomentazione da lui descritte. Si è valutato per ogni argomentazione in quale o quali delle componenti toulminiane si sia concentrato l’errore. Ogni argomentazione considerata errata può infatti contenere errori differenti che possono riguardare una soltanto, diverse o tutte e quattro le componenti di Backing, Warrant, Data e Conclusion. L’informazione che ne è emersa è che nella maggioranza dei casi il fatto che uno studente di scuola superiore non riesca ad argomentare adeguatamente un’affermazione dipende dal richiamo errato di conoscenze sull'oggetto dell'argomentazione stessa ("Warrant" e "Backing"), conoscenze che dovrebbero supportare i passi di ragionamento. Si è infine condotta un’indagine sul terreno logico e linguistico dei passi di ragionamento degli studenti e della loro concatenazione, in modo particolare attraverso l’analisi dell’uso dei connettivi linguistici che esprimono e permettono le inferenze, e della padronanza logica delle concatenazioni linguistiche. Si è osservato per quanto riguarda le scuole superiori di I grado, che le difficoltà di argomentazione dovute anche a scarsa padronanza del linguaggio sono circa l’8% del totale; per le scuole superiori di II grado questa percentuale scende al 6%.
Resumo:
Lo scopo della tesi è di stimare le prestazioni del rivelatore ALICE nella rivelazione del barione Lambda_c nelle collisioni PbPb usando un approccio innovativo per l'identificazione delle particelle. L'idea principale del nuovo approccio è di sostituire l'usuale selezione della particella, basata su tagli applicati ai segnali del rivelatore, con una selezione che usi le probabilità derivate dal teorema di Bayes (per questo è chiamato "pesato Bayesiano"). Per stabilire quale metodo è il più efficiente , viene presentato un confronto con altri approcci standard utilizzati in ALICE. Per fare ciò è stato implementato un software di simulazione Monte Carlo "fast", settato con le abbondanze di particelle che ci si aspetta nel nuovo regime energetico di LHC e con le prestazioni osservate del rivelatore. E' stata quindi ricavata una stima realistica della produzione di Lambda_c, combinando i risultati noti da esperimenti precedenti e ciò è stato usato per stimare la significatività secondo la statistica al RUN2 e RUN3 dell'LHC. Verranno descritti la fisica di ALICE, tra cui modello standard, cromodinamica quantistica e quark gluon plasma. Poi si passerà ad analizzare alcuni risultati sperimentali recenti (RHIC e LHC). Verrà descritto il funzionamento di ALICE e delle sue componenti e infine si passerà all'analisi dei risultati ottenuti. Questi ultimi hanno mostrato che il metodo risulta avere una efficienza superiore a quella degli usuali approcci in ALICE e che, conseguentemente, per quantificare ancora meglio le prestazioni del nuovo metodo si dovrebbe eseguire una simulazione "full", così da verificare i risultati ottenuti in uno scenario totalmente realistico.