139 resultados para Teorema Egregium de Gauss


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo spazio duale V* di un K-spazio vettoriale V, con K = R, o C, è definito come l'insieme dei funzionali lineari e continui da V in K. Definendo su di esso le operazioni di somma tra funzionali lineari e di prodotto per scalare, V* acquisisce una struttura di K-spazio vettoriale che risulta molto utile. Infatti il suo studio permette di comprendere meglio le caratteristiche dello spazio V. A tal proposito interviene l'argomento che è oggetto dell'elaborato: il Teorema di Rappresentazione di Riesz. Diversi risultati sono raggruppati sotto questo nome, che deriva dal matematico ungherese Frigyes Riesz, e tutti permettono di caratterizzare chiaramente gli elementi del duale dello spazio a cui si riferiscono. Scopo della tesi è quello di presentare il teorema nelle sue varie forme a partire da una delle più elementari: quella relativa a spazi vettoriali finiti. Ripercorrendo via via le sue generalizzazioni si arriverà all'enunciato inerente allo spazio delle funzioni continue f da X in C che si annullano all'infinito, dove X è uno spazio di Hausdorff localmente compatto. Si vedrà inoltre un esempio di applicazione del teorema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente elaborato vuole illustrare alcuni risultati matematici di teoria della misura grazie ai quali si sono sviluppate interessanti conseguenze nel campo della statistica inferenziale relativamente al concetto di statistica sufficiente. Il primo capitolo riprende alcune nozioni preliminari e si espone il teorema di Radon-Nikodym, sulle misure assolutamente continue, con conseguente dimostrazione. Il secondo capitolo dal titolo ‘Applicazioni alla statistica sufficiente’ si apre con le definizioni degli oggetti di studio e con la presentazione di alcune loro proprietà matematiche. Nel secondo paragrafo si espongono i concetti di attesa condizionata e probabilità condizionata in relazione agli elementi definiti nel paragrafo iniziale. Si entra nel corpo di questo capitolo con il terzo paragrafo nel quale definiamo gli insiemi di misura, gli insiemi di misura dominati e il concetto di statistica sufficiente. Viene qua presentato un importante teorema di caratterizzazione delle statistiche sufficienti per insiemi dominati e un suo corollario che descrive la relativa proprietà di fattorizzazione. Definiamo poi gli insiemi omogenei ed esponiamo un secondo corollario al teorema, relativo a tali insiemi. Si considera poi l’esempio del controllo di qualità per meglio illustrare la nozione di statistica sufficiente osservando una situazione più concreta. Successivamente viene introdotta la nozione di statistica sufficiente a coppie e viene enunciato un secondo teorema di caratterizzazione in termini di rapporto di verosimiglianza. Si procede quindi ad un confronto tra questi due tipi di sufficienza. Tale confronto viene operato in due situazioni differenti e porta a risultati diversi per ogni caso. Si conclude dunque l’elaborato marcando ancora l’effettiva bontà di una statistica sufficiente in termini di informazioni contenute al suo interno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si consideri un insieme X non vuoto su cui si costruisce una sigma-algebra F, una trasformazione T dall'insieme X in se stesso F-misurabile si dice che conserva la misura se, preso un elemento della sigma-algebra, la misura della controimmagine di tale elemento è uguale a quella dell'elemento stesso. Con questa nozione si possono costruire vari esempi di applicazioni che conservano la misura, nell'elaborato si presenta la trasformazione di Gauss. Questo tipo di trasformazioni vengono utilizzate nella teoria ergodica dove ha senso considerare il sistema dinamico a tempi discreti T^j x; dove x = T^0 x è un dato iniziale, e studiare come la dinamica dipende dalla condizione iniziale x. Il Teorema Ergodico di Von Neumann afferma che dato uno spazio di Hilbert H su cui si definisce un'isometria U è possibile considerare, per ogni elemento f dello spazio di Hilbert, la media temporale di f che converge ad un elemento dell'autospazio relativo all'autovalore 1 dell'isometria. Il Teorema di Birkhoff invece asserisce che preso uno spazio X sigma-finito ed una trasformazione T non necessariamente invertibile è possibile considerare la media temporale di una funzione f sommabile, questa converge sempre ad una funzione f* misurabile e se la misura di X è finita f* è distribuita come f. In particolare, se la trasformazione T è ergodica si avrà che la media temporale e spaziale coincideranno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si introduce l'analisi della stabilità delle orbite periodiche mostrandone un risultato fondamentale: il Teorema di Poinaré. A tal fine sono preliminarmente riportati alcune definizioni e risultati riguardanti la stabilità delle soluzioni e l'esistenza di soluzioni periodiche

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il teorema di Borsuk-Ulam asserisce che, data una funzione continua f da S^n in R^n, esiste una coppia di punti antipodali sulla sfera che vengono mandati da f nello stesso punto. In questa tesi si vede l'equivalenza di sei diverse formulazioni del teorema e se ne dà una dimostrazione nel caso 2-dimensionale, utilizzando spazi di orbite, gruppo fondamentale e rivestimenti. Si studiano alcune sue dirette conseguenze come generalizzazioni di risultati preliminari sulla suddivisione di regioni piane, dandone anche un’interpretazione fisica e si vede come tutto questo si applica al “Ham Sandwich Theorem” in R^3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella mia tesi ho deciso di affrontare il Teorema di Weierstrass utilizzando la serie di Fejer. Il teorema di Weierstrass afferma che ogni funzione continua definita su di un intervallo chiuso e limitato [a , b] può essere approssimata da una funzione polinomiale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si presenta il concetto di politopo convesso e se ne forniscono alcuni esempi, poi si introducono alcuni metodi di base e risultati significativi della teoria dei politopi. In particolare si dimostra l'equivalenza tra le due definizioni di H-politopo e di V-politopo, sfruttando il metodo di eliminazione di Fourier-Motzkin per coni. Tutto ciò ha permesso di descrivere, grazie al lemma di Farkas, alcune importanti costruzioni come il cono di recessione e l'omogeneizzazione di un insieme convesso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi è uno studio di alcuni aspetti della nuova metodologia “deep inference”, abbinato ad una rivisitazione dei concetti classici di proof theory, con l'aggiunta di alcuni risultati originali orientati ad una maggior comprensione dell'argomento, nonché alle applicazioni pratiche. Nel primo capitolo vengono introdotti, seguendo un approccio di stampo formalista (con alcuni spunti personali), i concetti base della teoria della dimostrazione strutturale – cioè quella che usa strumenti combinatoriali (o “finitistici”) per studiare le proprietà delle dimostrazioni. Il secondo capitolo focalizza l'attenzione sulla logica classica proposizionale, prima introducendo il calcolo dei sequenti e dimostrando il Gentzen Hauptsatz, per passare poi al calcolo delle strutture (sistema SKS), dimostrando anche per esso un teorema di eliminazione del taglio, appositamente adattato dall'autore. Infine si discute e dimostra la proprietà di località per il sistema SKS. Un percorso analogo viene tracciato dal terzo ed ultimo capitolo, per quanto riguarda la logica lineare. Viene definito e motivato il calcolo dei sequenti lineari, e si discute del suo corrispettivo nel calcolo delle strutture. L'attenzione qui è rivolta maggiormente al problema di definire operatori non-commutativi, che mettono i sistemi in forte relazione con le algebre di processo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il primo capitolo espone nozioni generali sulle varietà e sulle curve algebriche, sulle mappe fra di esse e su alcune proprietà geometriche importanti per caratterizzare le curve ellittiche. Il secondo capitolo propone un'introduzione allo studio geometrico e algebrico di tali curve. Il terzo e il quarto capitolo affrontano lo studio dei punti a coordinate razionali, per curve definite prima su campi locali e poi su campi globali: l'insieme di tali punti è un gruppo. Il risultato fondamentale, contenuto nel teorema di Mordell-Weil, è che tale gruppo è finitamente generato. Tutto il quarto capitolo propone i risultati necessari per la dimostrazione di tale affermazione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il teorema della funzione implicita, valido nel caso di varietà differenziabili, non risulta vero se si prendono in analisi varietà algebriche affini con la topologia di Zariski. Dopo aver introdotto le nozioni di morfismo piatto e di morfismo non ramificato, si arriva ai morfismi étale, definiti proprio come quei morfismi che sono piatti e non ramificati; nella seconda parte si considerano i morfismi di varietà non singolari dimostrando che la classe dei morfismi étale coincide esattamente con quei morfismi che inducono isomorfismi sugli spazi tangenti. Si approfondisce poi la nozione di morfismo étale da un punto di vista algebrico e infine la nozione di intorno étale di un punto, che si basa su quella di morfismo étale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi tratta dei gruppi semplici sporadici, in particolar modo dei gruppi di Mathieu. Sono state ripercorse tappe storiche fondamentali, a partire dalla semplicità del gruppo alterno An, n>4, nota a Galois, fino a giungere al teorema di classificazione dei gruppi semplici, di cui i gruppi sporadici rappresentano un caso particolare. Vengono poi proposte diverse costruzioni dei gruppi di Mathieu, passando dall'algebra alla geometria fino alla teoria dell'informazione. Quindi vengono discusse le proprietà principali dei gruppi di Mathieu, e infine si presentano congetture in cui i gruppi di Mathieu, o più in generale i gruppi sporadici, giocano un ruolo fondamentale, come ad esempio nella congettura "moonshine". Al termine della tesi vengono presentati i gruppi di Mathieu in ambiti diversi dal mondo matematico, dal gioco alla musica.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si esaminano alcune questioni riguardanti le curve definite su campi finiti. Nella prima parte si affronta il problema della determinazione del numero di punti per curve regolari. Nella seconda parte si studia il numero di classi di ideali dell’anello delle coordinate di curve piane definite da polinomi assolutamente irriducibili, per ottenere, nel caso delle curve ellittiche, risultati analoghi alla classica formula di Dirichlet per il numero di classi dei campi quadratici e delle congetture di Gauss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le più moderne e diffuse applicazioni wireless attuali sono dedicate a sistemi distribuiti in grandi quantità ed il più possibile miniaturizzati. In questa tesi si discute di tecniche di miniaturizzazione delle antenne di questi sistemi. Tradizionalmente tali tecniche si sono basate su substrati ad elevata costante dielettrica che hanno però, come contropartita, un deterioramento delle prestazioni radianti. Un'alternativa molto promettente è offerta da substrati magneto-dielettrici che, pur garantendo analoghe riduzioni degli ingombri, possono offrire migliori opportunità per il comportamento radiante e per l'adattamento dell'antenna al resto del sistema. In questa tesi, partendo dallo stato dell'arte della letteratura scientifica, si è sviluppato un modello che consente di valutare a priori i vantaggi/svantaggi di diverse topologie d'antenne basate su substrati magneto-dielettrici. Il metodo si basa sul teorema di equivalenza. Infine la tesi affronta il problema di sviluppare un metodo per la caratterizzazione dei parametri costitutivi di tali materiali.