66 resultados para stability behavior

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper was to develop formulations increased of DMAE and evaluate their physical-chemical stability and rheological behavior. Eleven formulations containing 3% DMAE pidolate or 3% DMAE acetamidobenzoate were developed and both preliminary stabilities tests and rheological measurements were carried out. They were considered stable during all period of study. The type of DMAE did not modify the viscosity of the emulsion and all presented pseudoplastic behavior with hysteresis area. An increase of hysteresis area could be observed with DMAE addition. The results point that the type of DMAE can influence the physical stability of the final product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animals show behavioral and physiological changes that emerge in response to environmental perturbations (i.e., emergency life-history stages). In this study, we investigate the effects of light intensity on aggressive encounters and social stability in groups of adult male Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). The study compared the behavior observed under low (280.75 ± 50.60 lx) and high (1394.14 ± 520.32 lx) light intensities, with 12 replicates for each treatment. Adult fish were isolated in 36-L aquaria for 96 hours, and three males were grouped for 11 days in 140-L aquaria. Agonistic behavior was video-recorded (10 min/day) on the 3rd, 5th, 7th, and 9th day to quantify aggressive interactions and social stability. There was an effect of light intensity and day of observation on the total number of agonistic behaviors performed by the fish group. Besides, increased frequency of aggressive interactions (the sum of the four sessions) by the alpha, beta and gamma fish occurred at the higher light intensity. The dominance ranks of the fish remained unchanged across the observation sessions under both the low and high light intensities. We concluded that enhanced light intensity has a cumulative effect that increases the aggressiveness of the Nile tilapia but that this effect is not sufficiently strong to destabilize the social hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal stability, thermal decomposition process, residual mass, temperature of glass transition (T-g) and temperature dependence of storage modulus (E'), were determined for latex membranes prepared from six clones of Hevea brasiliensis: IAC 331, IAC 332, IAC 333 and IAC 334 grown at experimental plantations of Instituto Agronomico de Campinas (IAC) in Votuporanga, São Paulo State, Brazil. Latex membranes from GT1 and RRIM 600 Asian matrix clones were used as references. The thermal behavior of latex membranes from genetically improved rubber trees was characterized using thermogravimetry/derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The thermal behavior of latex from clones studied in the present work showed similar features of the clones previously reported (IAC 40, IAC 300, IAC 301, IAC 328, IAC 329 and IAC 330), with mass loss in four consecutive steps, except IAC 333, which showed an additional mass loss step. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis, spectroscopic characterization and thermal analysis of the compounds [Pd-2(dmba)(2)(mu-NCO)(mu-2-qnS)] (1), [Pd-2(dmba)(2)(mu-NCO)(mu-8-qnS)] (2), [Pd(2-qnS)(2)] (3) and [Pd(8-qn(S))2] (4) (dmba=N,N-dimethylbenzylamine; 2-qnS=2-quinolinethiolate; 8-qnS=8-quinolinethiolate) are described. The thermal decomposition of these compounds occurs in four consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3 > 1 > 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presented physicochemical characterization and rheological behavior evaluation of the liquid crystalline mesophases developed with different silicones. There were prepared 5 ternary systems, which were carried out the determination of the relative density, the electric conductivity and polarized light microscopy analysis, being selected two systems to promote the Preliminary Stability Tests. The results showed that System 1 obtained the major liquid crystal formation and a higher stability. The temperature influences in the systems stability and phases structure. In hot oven, observed oneself the mixture of lamellar and hexagonal phase, for both systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical investigation on the as-cast Ti-Mo alloys (4-20 Mo wt.%) applied as biomaterials in Na2SO4 and Ringer physiological solutions is reported. Analyses of the open-circuit potential indicated that all alloys present spontaneous passivation. SEM and cyclic voltammograms obtained in the Ringer solution showed that the samples studied do not present pitting corrosion at potentials up to 8 V (SCE), indicating high corrosion resistance. Open-circuit potential profiles of the anodic oxides growth in both solutions show that the presence of chloride ions during the anodization does not influence the oxides' chemical stability, and also clearly indicate that adding Mo to pure Ti improves the stability of the anodic oxides. All these results suggest Ti-Mo alloys promissory to be applied as biomaterials. (c) 2008 Elsevier Ltd. All rights reserved.