31 resultados para quantum dots formation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved X-ray absorption-fine structure (Quick-XAFS) and UV-Vis absorption spectroscopies were combined for monitoring simultaneously the time evolution of Zn-based species and ZnO quantum dot (Qdot) formation and growth during the sol-gel synthesis from zinc oxy-acetate precursor solution. The time evolution of the nanostructural features of colloidal suspension was independently monitored in situ by small angle X-ray scattering (SAXS). In both cases, the monitoring was initialized just after the addition of NaOH solution (B = [OH]/[Zn] = 0.5) to the precursor solution at 40 degrees C. Combined time-resolved Quick-XAFS and UV-Vis data showed that the formation of ZnO colloids from the zinc oxy-acetate consumption achieves a quasi-steady-state chemical equilibrium in less than 200s. Afterwards, the comparison of the ZnO Qdots size and Guinier gyration radius evidences a limited aggregation process coupled to the Qdots growth. The analysis of the experimental results demonstrates that the nanocrystal coalescence and Ostwald ripening control the kinetics of the Qdot growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioglycolic acid-capped Use quantum dots (QDs) were assembled on glass substrates with two distinct polyelectrolytes, viz poly(allylamine hydrochloride) (PAH) and poly(amidoamine) (PAMAM), generation 4 dendrimer, via the layer-by-layer (LbL) technique. Films containing up to 30 polyelectrolyte/QD bilayers were prepared. The growth of the multilayers was monitored with UV-vis spectroscopy, which showed an almost linear increase in the absorbance of the 2.8 nm QDs at 535 nm with the number of deposited bilayers. AFM measurements estimated a film thickness of 3 nm per bilayer for the PAH/Cdse films. The adsorption process and the optical properties of the PAMAM/CdSe LbL films were further analyzed layer-by-layer using surface plasmon resonance (SPR), from which a thickness of 3.2 nm was found for a PAMAM/CdSe bilayer. Photoluminescence measurements revealed higher photooxidation of the quantum dots in PAH/CdSe than in PAMAM/CdSe films. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a numerical renormalization-group study of the thermoelectric effect in the single-electron transistor (SET) and side-coupled geometries. As expected, the computed thermal conductance and thermopower curves show signatures of the Kondo effect and of Fano interference. The thermopower curves are also affected by particle-hole asymmetry. © 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic nanoparticles (NPs) have been used to improve the sensibility of biosensors and bioassays either by enhancing radiative emission or inducing quenching process on fluorescent probes. The aim of this research was to study the interaction of silver and silver-pectin NPs with water-dispersed carboxyl-coated cadmium telluride (CdTe) quantum dots (QDs). Metallic NPs were observed to change the emission of these fluorophores through local field effects. In a solution-base platform, an increase of 82 % was observed for the CdTe emission due to the interaction of QDs and silver-pectin NPs. QDs interaction with silver NPs without pectin was also investigated and a smaller emission enhancement of 20 % was detected. We observed that the NPs' nature and QDs' surface charge and concentration are important parameters for NPs-QDs interaction. Moreover, the presence of the pectin polymer shows to be a key component to the observed fluorescence enhancement. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process. (C) 2004 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phase separation suppression due to external biaxial strain is observed in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect is taking place in thin epitaxial layers pseudomorphically grown by molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio calculations carried out for the alloy free energy predict and Raman measurements confirm that biaxial strain suppress the formation of phase-separated In-rich quantum dots in the InxGa1-xN layers. Since quantum dots are effective radiative recombination centers in InGaN, we conclude that strain quenches an important channel of light emission in optoelectronic devices based on pseudobinary group-III nitride semiconductors. (C) 2002 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the formation of compositional modulation and atomic ordering in InGaP films. Such bulk properties - as well as surface morphologies - present a strong dependence on growth parameters, mainly the V/III ratio. Our results indicate the importance of surface diffusion and, particularly, surface reconstruction for these processes. Most importantly from the application point of view, we show that the compositional modulation is not necessarily coupled to the surface instabilities, so that smooth InGaP films with periodic compositional variation could be obtained. This opens a new route for the generation of templates for quantum dot positioning and three-dimensional arrays of nanostructures. © 2007 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we show that the electronic properties of multi-open dots structures are strongly modified by even smalt changes in their geometries. Our discussion of these effects is done in terms of the interaction among localized states (dot-like) and extended states (channel-like), from which a Fano resonance situation arises.