86 resultados para Whey
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production of antimicrobial compounds of some strains of Lactobacillus acidophilus has been studied. They have been grown in whey supplemented with soy milk. It has been found that the production of compounds is able to inhibit the growing of both target bacteria analysed: Staphylococcus aureus and Escherichia coli. The results showed a significant variation (p>0.05) depending on the strain of L. acidophilus and on the level of supplementation utilized. Most of the inhibition observed resulted from the presence of the lactic acid produced. It has also been found the production of other antimicrobial compounds showing inhibitory capacity. The action of these compounds was influenced by the substract pH.
Resumo:
The acidic ninhydrin spectrophotometric method (ANSM) for quantitative determination of free and bound sialic acid of milk glycoprotein has been proved to be fast and efficient for routine detection of fraudulent addition of rennet whey to fluid milk. In this research the ANSM was compared with the high performance liquid chromatography (HPLC) method, internationally recommended for caseinomacropeptide (CMP) determination, which besides its high accuracy is more sophisticated and requires trained personnel. For several sample conditions (raw milk and milk with variable added amounts of rennet cheese whey), the methods showed an excellent linear correlation, with r = 0.981 when milk was deproteinized with a 120 g.L-1 final concentration of trichloroacetic acid (TCA) concentration. The best correlations could be seen with final concentrations of 100 g.L-1 and 80 g.L-1 TCA; respectively, r = 0.992 and 0.993.
Resumo:
Whey supplemented with soy milk has been used as a low-cost alternative in the growth of Lactobacillus acidophilus for the production of antimicrobial compounds. Response Surface Metodology has been employed in order to study the effects of initial pH, incubation temperature and soy milk rate for supplementation in the production of antimicrobial substance. It has been observed that both tested microrganisms used (S. aureus and E. coli) were inhibited by antimicrobial substance produced by L. acidophilus. The results obtained with E. coli inhibition did not follow the employed statistical model. on the other hand, when the tested microorganism S. aureus was used, the best inhibition results have been obtained when L. acidophilus was incubated at 36.80 degrees C in whey with 5.6 initial pH and 31,90% (v/v) rate supplemented with soy milk. The analysed antimicrobial substances were nor acids neither hidrogen peroxid.
Resumo:
Silica gel surface was chemically modified with beta-diketoamine groups by reacting the silanol from the silica surface with 3-aminopropyl-triethoxysilane and 3-bromopentanedione, With this material, copper ions were adsorbed from aqueous solutions, the chemical analysis of the silica-gel-immobilized acetylacetone provided a quantity of 0.67 mmol g(-1) of organic groups attached to the support and 0.63 mmol g(-1) of copper, This material was used as a stationary phase in IMAC (immobilized metal affinity chromatography), to separate alpha-lactoalbumin from bovine milk whey, the results showed an efficient separation in the chromatographic column, the possibility of reutilization of the stationary phase was also investigated. (C) 1997 Academic Press
Resumo:
This study examined the production of protein hydrolysates with controlled composition from cheese whey proteins. Cheese whey was characterized and several hydrolysis experiments were made using whey proteins and purified beta -lactoglobulin, as substrates, and trypsin and a-chymotrypsin, as catalysts, at two temperatures and several enzyme concentrations. Maximum degrees of hydrolysis obtained experimentally were compared to the theoretical values and peptide compositions were calculated. For trypsin, 100% of yield was achieved; for alpha -chymotrypsin, hydrolysis seemed to be dependent on the oligopeptide size. The results showed that the two proteases could hydrolyze beta -lactoglobulin. Trypsin and alpha -chymotrypsin were stable at 40 degreesC, but a sharp decrease in the protease activity was observed at 55 degreesC.
Resumo:
The effect of three independent fermentation variables: demineralized whey powder (0.0; 1.5 and 3.0%), lactic culture concentration (1.0; 2.0 and 3.0%) and mix treatment temperature (85; 90 and 95°C) was studied. Fermentation time to reach pH 4.3, instrumental consistency and appearance, visual consistency and taste of the product were evaluated. Product consistency increased as mix treatment temperature increased and demineralized whey powder decreased. The powder had a stronger influence on instrumental consistency than did temperature. Appearance was better when whey powder was used at 1.4 to 1.6%. Visual consistency decreased as whey powder increased but addition of demineralized whey powder did not negatively affect yogurt flavor.
Resumo:
The purpose of this work was to study the influence of carrageenan level (X 1) and total solids content of yogurt/whey mixture (X 2) on starter culture fermentation time, physicochetnical properties (pH, fat and total solids contents) and rheological characteristics of lactic beverages using response surface methodology. The physicochemical characteristics of the lactic beverages were similar to those of commercial products. All beverages showed non-Newtonian fluid behavior with thixotropy and yield stress. The total solids content of the lactic beverages had a greater influence on the rheological behavior of these products than the carrageenan level. Wide ranges of consistency measurements were observed by varying the stabilizer level and total solids content.
Resumo:
Our objective was to investigate the effects of rehydration with acid whey or water at three moisture levels, as well as the effects of bacterial inoculation, on the fermentation, chemical composition and aerobic stability of corn grain silages. The trial was conducted in a completely randomized design with four replicates in a factorial arrangement as follows: 3 (rehydration with three different moisture levels: 300,350 and 400 mL/kg of corn grain)x 2 (silage inoculated with bacteria or not inoculated (control))x 2 (liquid used in the rehydration: acid whey or water). Overall, corn grain silages rehydrated with acid whey produced more lactic acid than the silages rehydrated with water (13.8 vs. 12.6 g/kg of dry matter (DM), respectively). In addition, increases in the rehydration of corn grain silages promoted decreases (linear) in lactic acid concentration as well as in production of total acids. Although inoculated silages had higher pH as consequence of the rehydration using water at the three levels, these treatments presented high DM recovery. In general, neutral detergent fiber (aNDFom) decreased if inoculant was applied in corn grain silages rehydrated with acid whey. After silos opening, silages rehydrated with 350 or 400 mL/kg (independent of the liquid) had lower aerobic stability than silages rehydrated with 300 mL/kg. Overall, we found that the inoculant did not promote significant changes in the composition of the corn grain silage. In contrast, the potential of the use of acid whey in ensiling corn grain is high, as its addition leads to improvements in the fermentation process and aerobic stability of the silages. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The bioavailability of amino adds from milk whey protein hydrolysates was evaluated using diffusion of the substances through semi-permeable membranes (dialyzability) and transport by Caco-2 cell cultures. The hydrolysates with low degree of hydrolysis (LDH) and high degree of hydrolysis (HDH) were obtained after 120 min of reaction time at 50 degrees C after the initial addition of pepsin, followed by the addition of trypsin, chymotrypsin and carboxypeptidase-A. The proteins and hydrolysates were further subjected to in vitro digestion with pepsin plus pancreatin. HPLC was used to determine the concentrations of dialyzable amino adds (48.4% of the non-hydrolyzed proteins, 63.2% of the LDH sample and 58.3% of the HDH sample), demonstrating the greater dialyzability of the hydrolysates. The LDH and HDH whey protein hydrolysates prepared with pepsin, trypsin, chymotrypsin and carboxypeptidase-A showed only 14.7% and 20.8% of dialyzable small peptides and amino acids, respectively. The efficiency of absorption was demonstrated by the preferential transport of Ile, Lou and Arg through a layer of cells. In the LDH hydrolysate, Tyr was also transported. Prior high- and low-degree hydrolysis of the whey provided transport by 5.7% and 6.6%, respectively, in comparison with 23% for non-hydrolyzed proteins, considering the total amount of these amino adds that was applied to the cells. (C) 2014 Elsevier Ltd. All rights reserved.